
Unlock next generation of high-performance battery systems

Electric Vehicle BMS: Establish a game-changing approach different from todays data driven single-technique

Common limitations today

- The approach is heavily relying on data driven insights
- Large part of the system development is based on indications gained from cell tests and isolated conditions
- Limited extrapolation capabilities with non-physical models leading to limitation for real world predictions

Our solution

Key to choose the best BMS and charging strategy:

- > Address the limitations of todays extrapolation on degradation
- Sain insights on the non-measurable quantities of vehicle operation
- Enable real-world fleet estimation
- Detect warranty issues and failures in cells

Enable a future multi-technique approach: Integrate fully predictive AutoLion battery models with AI data analytics & cloud monitoring

Presenter

Joshua Enriquez Geppert

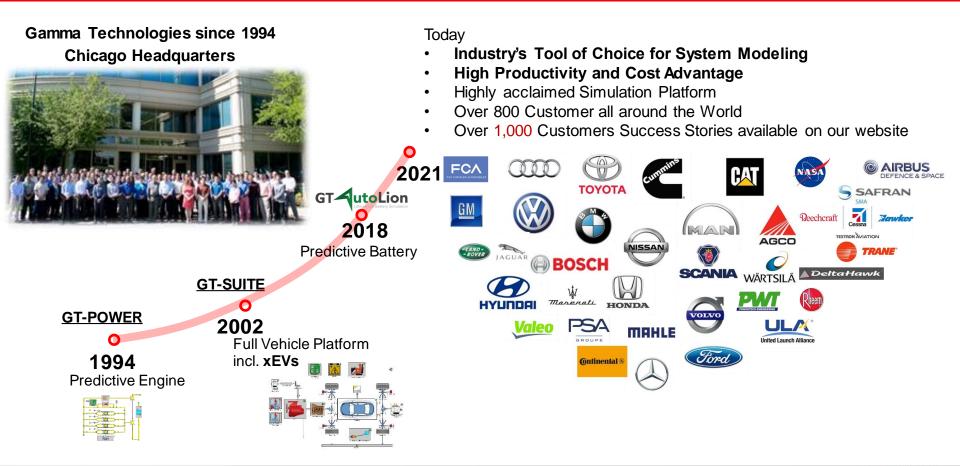
Business Development at Gamma Technologies GmbH

Shreyas Lele

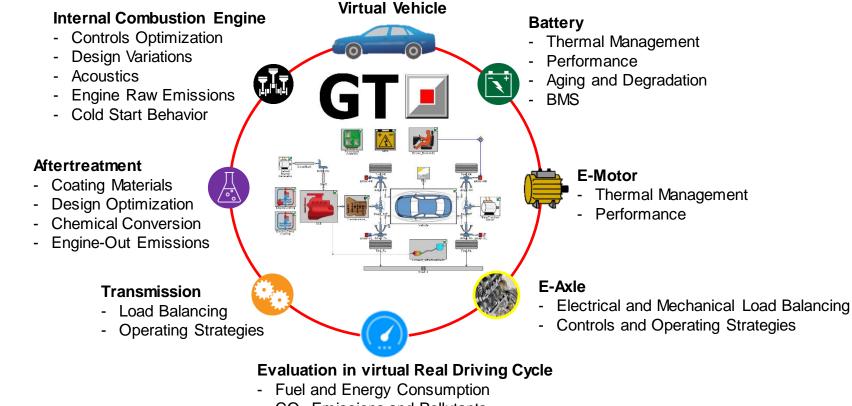
Application Engineer | Electric Systems at Gamma Technologies GmbH

Peter Stopp

EU Team Lead| Energy Conversion at Gamma Technologies GmbH

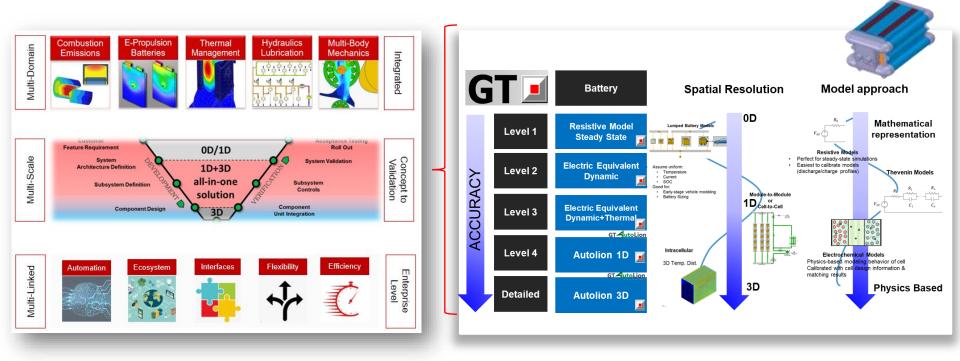


Michael Vallinder Electric Powertrain Division | SCANIA



About Gamma Technologies, LLC

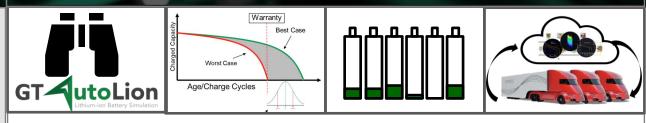
GT SUITE: Virtual Powertrain Components and Platform


- CO₂-Emissions and Pollutants
- Acoustics Legislation

Our Technology & Products

Enterprise-Level Platform with scalable architecture to meet current and emerging industry requirements

Battery modelling – at all fidelity level!



Unlock next generation of high-performance battery systems

Electric Vehicle BMS: Establish a game-changing approach different from todays data driven single-technique

Common limitations today

- The approach is heavily relying on data driven insights
- Large part of the system development is based on indications gained from cell tests and isolated conditions
- Limited extrapolation capabilities with non-physical models leading to limitation for real world predictions

Our solution

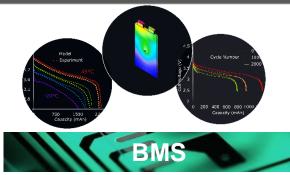
Key to choose the best BMS and charging strategy:

- > Address the limitations of todays extrapolation on degradation
- Sain insights on the non-measurable quantities of vehicle operation
- Enable real-world fleet estimation
- Detect warranty issues and failures in cells

Enable a future multi-technique approach: Integrate fully predictive AutoLion battery models with AI data analytics & cloud monitoring

Challenges: Fleet & Battery Lifetime prediction

Predict battery lifetime for vehicles according to their specific driving usage.



TESTING <u>Vehicle in-use phase</u> **Traditional models**

Controls strategy? Range, performance, battery life-time, fleet aging

Age/Charge Cycles

Digital Twin: PREDICTIVE AUTOLION MODEL

- Optimization of vehicle & battery operation strategy to maximize electric range and lifetime
- Prediction of battery's end of life
- Identify damaging scenarios
- Identification of routes that drive aging

Limited cell & vehicle tests / isolated conditions / complex aging

Presenter

Joshua Enriquez Geppert

Business Development at Gamma Technologies GmbH

Shreyas Lele

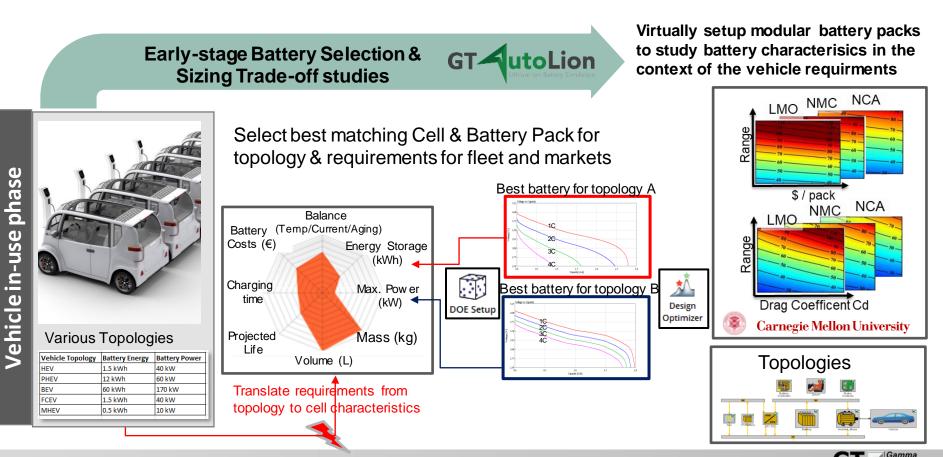
Application Engineer | Electric Systems at Gamma Technologies GmbH

Peter Stopp

EU Team Lead Energy Conversion at Gamma Technologies GmbH

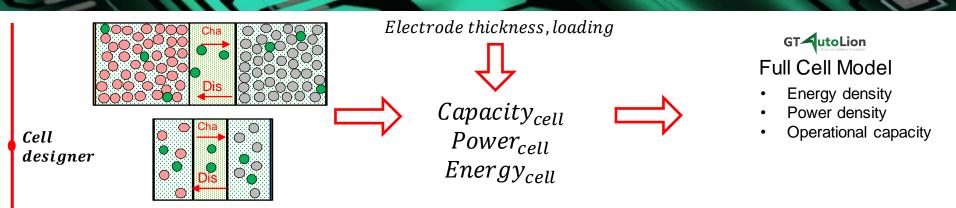
Michael Vallinder Electric Powertrain Division | SCANIA

Agenda

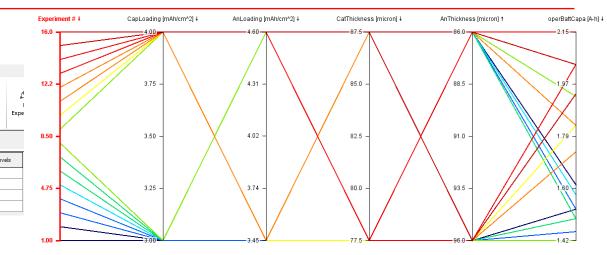

- Early-stage Battery Selection & Sizing Trade-off studies
- Identify aging effects under all operating conditions

0

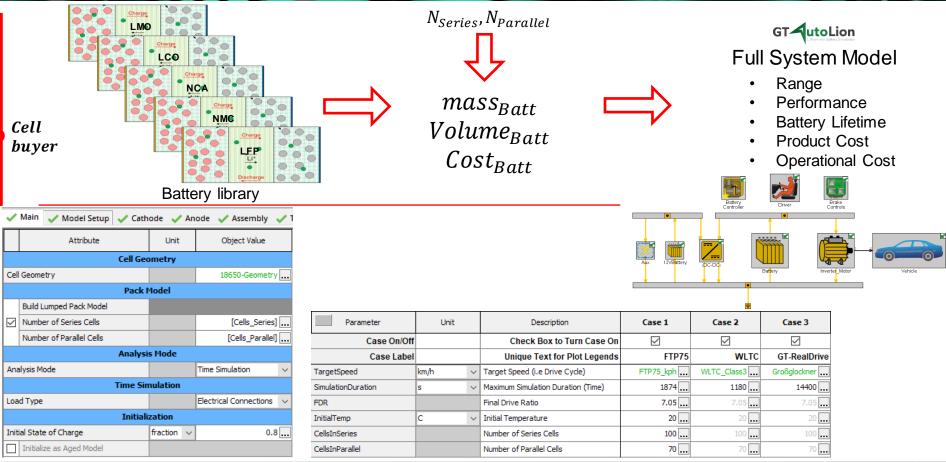
- Push conflicting goals of the BMS to a secure limit and choose the best trade off
- Integrate predictive AutoLion battery models with AI


Early-stage Battery Selection & Sizing Trade-off studies

Technologies


All information in this document is confidential and cannot be reproduced or transmitted without the express written permission of Gamma Technologies, LLC ©

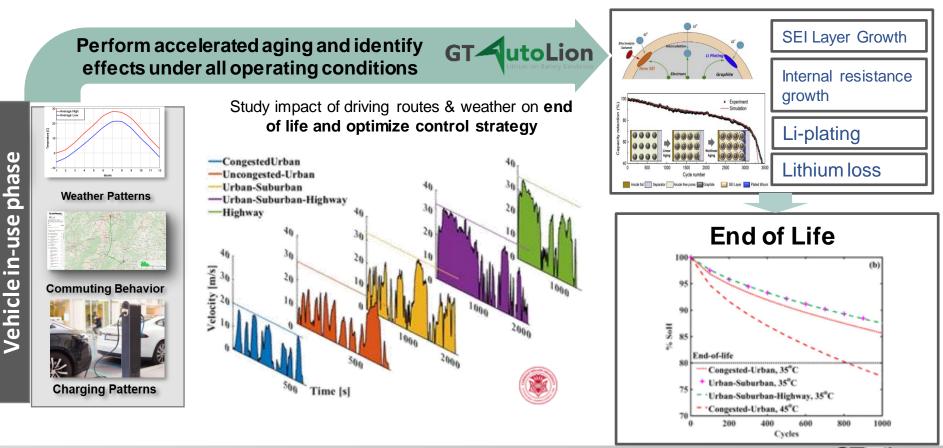
Early-stage Battery Selection & Sizing Trade-off studies


Model DoE setup

Home	Advanced						
1 2 a x		C	DOE Type:	Full Factorial	↓ # of Exp	eriments:	16
Turn	Clear	Refresh					
DOE OFF	DOE	Experiments					
General		Refresh	DOE Control				
Main 🕅 Design of Exp		eriments All 1		escription	Min	Max	
						MdX	# of Leve
Capl oading	(DOF)	mAh/cm^2					
CapLoading AnLoading (I		mAh/cm^2 v mAh/cm^2 v	· Capacity Loadir	ng	3.0	4.0 4.6	# of Leve 2 2
	(DOE)		Capacity Loadir	ng	3.0	4.0	2
AnLoading (i	DOE)	mAh/cm^2 ~	Capacity Loadir Capacity Loadir Cathode	ng	3.0 3.45	4.0 4.6	2

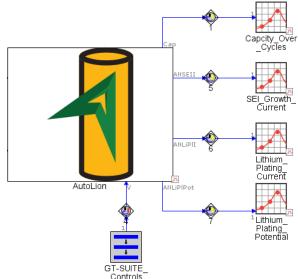
Early-stage Battery Selection & Sizing Trade-off studies

All information in this document is confidential and cannot be reproduced or transmitted without the express written permission of Gamma Technologies, LLC ©


Agenda

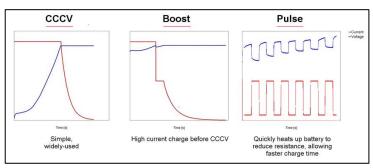
- Early-stage Battery Selection & Sizing Trade-off studies
- Identify aging effects under all operating conditions

- Push conflicting goals of the BMS to a secure limit and choose the best trade off
- Integrate predictive AutoLion battery models with AI



Identify aging effects under all operating conditions

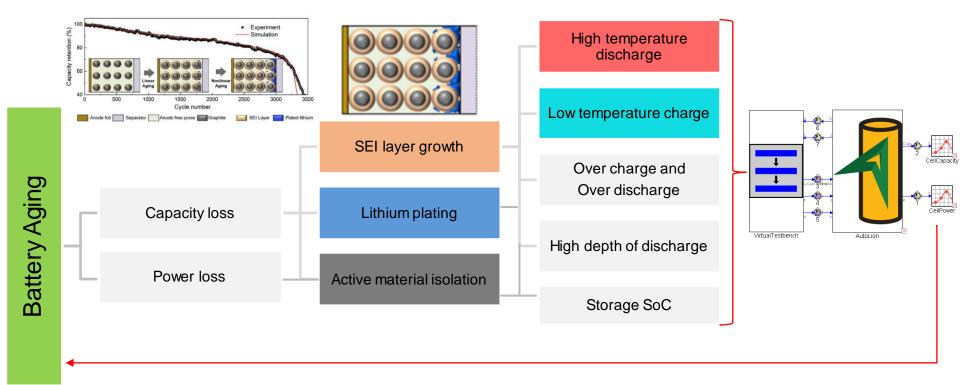
Flexibility in simulating Real World Aging



- GT-SUITE Control library
- GT-RealDrive
- Co-simulation
 - MATLAB/Simulink
 - Python

- Imposes load on the Battery Pack depending on:
 - Time and date, Temperature
 - · Charging patterns

Normal Week						
Day	Start	Description				
Sun		Rest				
	06:30	Drive to work				
Mon-Fri		Rest				
MOII-FII	17:00	Drive home				
		Rest				
Sat	11:00	Errands				
Sal		Rest				


Vacation Week					
Day	Start	Description			
Sup	11:00	Drive to Destination			
Sun		Rest			
Mon-Fri		Rest			
Sat	11:00	Drive home			
Sat		Rest			
(simulated every 13 th week)					

All information in this document is confidential and cannot be reproduced or transmitted without the express written permission of Gamma Technologies, LLC ©

Identify aging effects under all operating conditions

Presenter

Joshua Enriquez Geppert Business Development at Gamma Technologies GmbH

Shreyas Lele

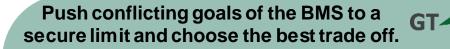
Application Engineer | Electric Systems at Gamma Technologies GmbH

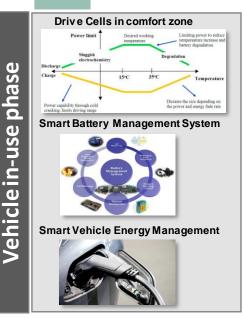
GT 🔳

Peter Stopp

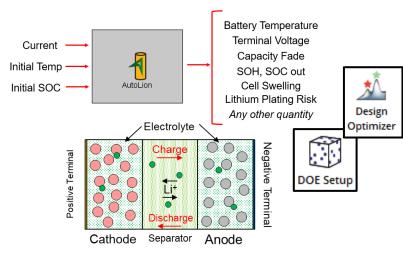
EU Team Lead| Energy Conversion at Gamma Technologies GmbH

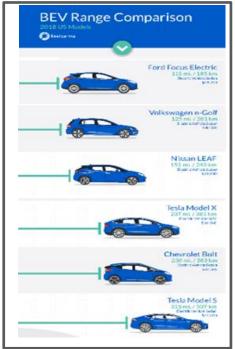
Michael Vallinder Electric Powertrain Division | SCANIA




Agenda

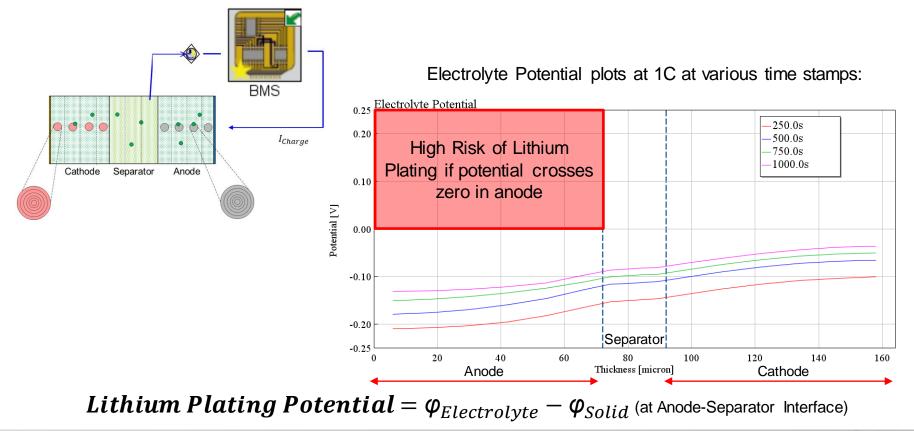
- Early-stage Battery Selection & Sizing Trade-off studies
- Identify aging effects under all operating conditions
- Push conflicting goals of the BMS to a secure limit and choose the best trade off
- Integrate predictive AutoLion battery models with cloud monitoring


Push conflicting goals of the BMS to a secure limit and choose the best trade off

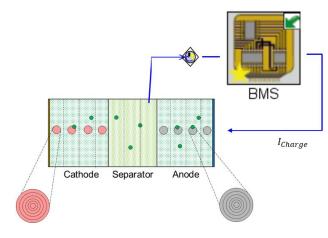


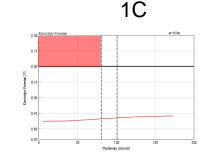
AutoLion **physical models** give insights to the **non measuarable quantities** which are essential to gain full control **over complex trade offs for fleet and life time**.

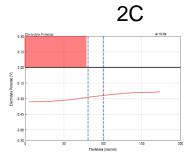
oLion



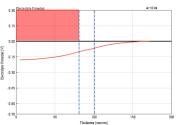
Trade off for Optimal Range




Push conflicting goals of the BMS to a secure limit and choose the best trade off



Push conflicting goals of the BMS to a secure limit and choose the best trade off



Thickness [micran

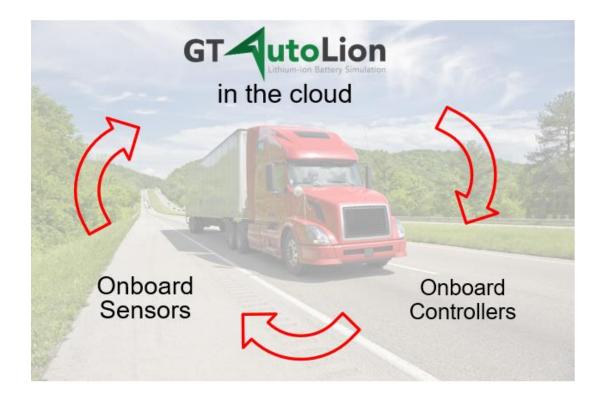
Lithium Plating Potential = $\varphi_{Electrolyte} - \varphi_{Solid}$ (at Anode-Separator Interface)

All information in this document is confidential and cannot be reproduced or transmitted without the express written permission of Gamma Technologies, LLC ©

0.30

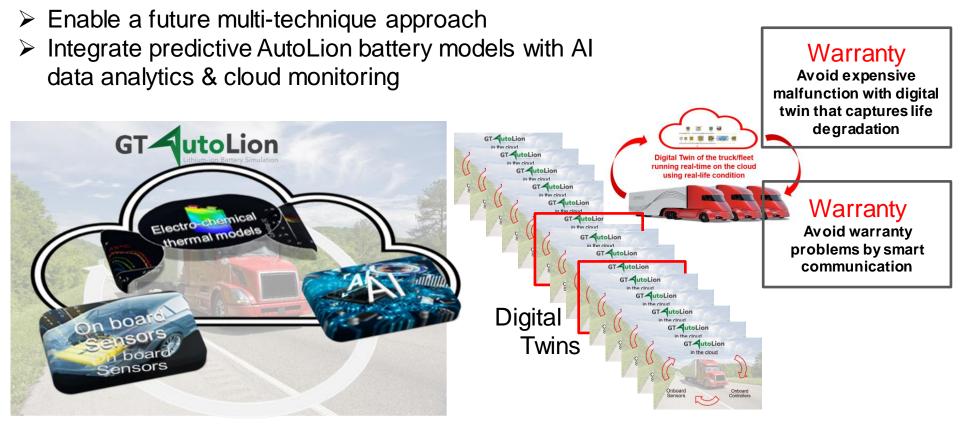
0.70

Agenda


- Early-stage Battery Selection & Sizing Trade-off studies
- Identify aging effects under all operating conditions

0

- Push conflicting goals of the BMS to a secure limit and choose the best trade off
- Integrate predictive AutoLion battery models with cloud monitoring



Integrate predictive GT-AutoLion battery models with cloud monitoring

Integrate predictive GT-AutoLion battery models with cloud monitoring

Presenter

Joshua Enriquez Geppert

Business Development at Gamma Technologies GmbH

Shreyas Lele Application Engineer | Electric Systems at Gamma Technologies GmbH

GT

Peter Stopp

EU Team Lead | Energy Conversion at Gamma Technologies GmbH

Michael Vallinder

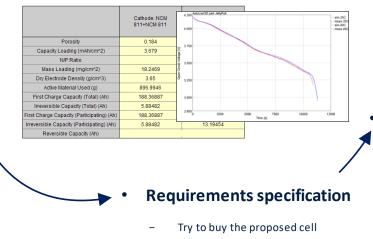
Electric Powertrain Division | SCANIA

SCANIA

Michael Vallinder

Autolion usage at scania

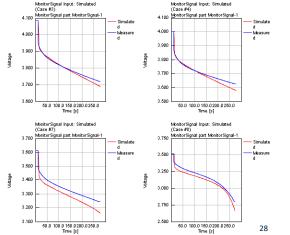
Content


- How AutoLion is used throughout the development process
- Explain how we use it our contact with suppliers
- Use the model as a "virtual sensor" to aid and expand testing
- Example of aging simulations to predict and expand aging tests
- Show the software-in-the-loop integration

Performance simulations – AutoLion1D

- Iterate predictive model
 - Design the cell based on previous knowledge, literature or dialog with supplier
 - Study results from design report, OCV, capacity
 - Run simulations to figure out DC-IR characteristics
 - Find the "big" parameters such as electrode thicknesses, particle size and Li+loading to match requirements and cost

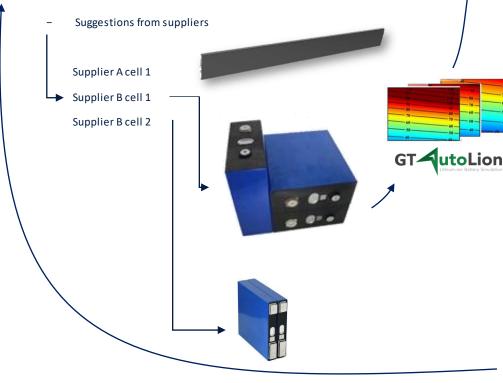
Info class External / Michael Vallinder / AutoLion Webinar



Calibrate virtual twin

_

- Perform calibration of the model to available test data
- With skilled initial guesses not much calibration is needed
- Information is key, with more test data and design information from supplier or tear-down the better
 - After successful calibration one can implicitly trust the model to accurately predict exchange currents and similar parameters that are necessary for the aging simulations



Testing

- Perform test plan virtually with AutoLion to identify gaps or redundancies in the test plan
- Perform cell testing

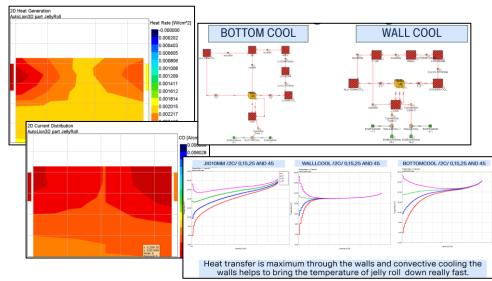
AutoLion1D in dialogue with suppliers

Requirements specification rev1

Initial assessment

- Create models for interesting cells
- Correct accuracy, quick-and-dirty just to understand the different suggestions
- Heat rejection problems, fundamental DC-IR differences
- Jelly Roll temperature and performance uniformity
- Already here we start to follow the product from idea to first prototype to verified production cell with our virtual twin in GT-AutoLion
- Understand the product
 - To have a good relation with the supplier we need to ask the correct questions and state clear demands
 - GT-AutoLion is a great tool for understanding our own demands and also understand the limitations from the supplier
 - Use these models to understand what happens to the requirements if we settle for 1C charging instead of 5C as an example
 - Understand the pricing, try to figure out what goes into a certain cell to understand why one supplier is cheaper but worse or better but costly (typically design of electrode layers)

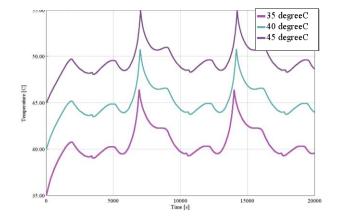
• Requirements specification rev2


 Essentially the purchasing process is front loaded with better 29 and more informed requirements

Info class External / Michael Vallinder / AutoLion Webinar

Expand on the details with AutoLion 3D

AutoLion 3D model


- With the electrochemical properties calibrated in the virtual twin additional details are added with AutoLion3D
- By modelling the thermal aspects in detail the virtual twin can answer interesting engineering questions
- The first task could be to understand the test setup and rig construction to know what is actually being tested/measured

Info class External / Michael Vallinder / AutoLion Webinar

Virtual sensor

- The detailed model can be used as a virtual sensor to complement test data
- Measured temp is not the same as actual temp in the jelly roll, which is what we are interested in
- It showed that a 35,40,45 degC climate chamber tests were actually 5 degC higher in the Jelly Roll respectively
- This is important to know when correlating data, requirements and BMS functions to measured temperatures or look-up tables

Measured

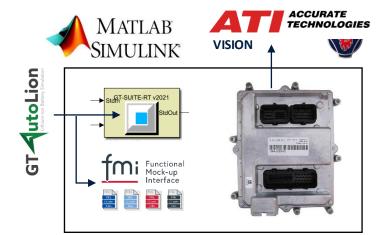
JellvRoll temp

Aging Simulations – AutoLion1D

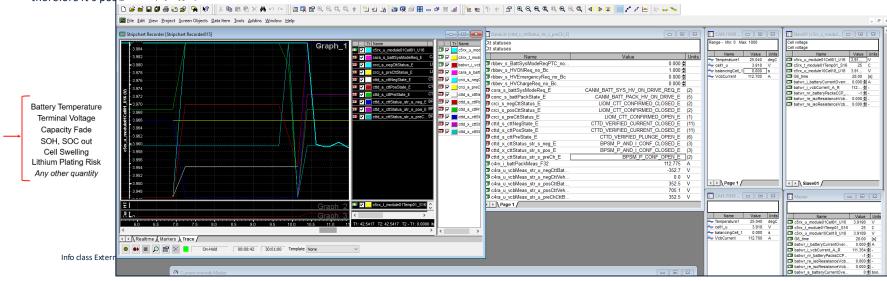
Capacity[%]

Capacity [%]

• Simulate aging Calibrate virtual twin to test data Expand on the test matrix with additional _ Same as performance calibration just that the focus now is on _ simulated aging tests aging mechanics 'See into the future' and revise test matrix _ Calendar, cyclic and drive cycle data is used to calibrate the aging parameters Perform additional aging simulations for _ problems that were not thought of Temperature effect on capacity @ SOC95 SOC effect on capacity @ 50°C 105% CAPACITY RETENTION AT 300 DAYS 105%5 ---25°C 100.0% Extended aging data with the use of simulation --- SOC30% 100% 100% 98.0% ---- SOC50% --- 40°C ---- SOC80% 8 95% 50°C 95% --- SOC95% 60°C 50 DEGREES 94.0 90% 90% 40 DEGREES 25 DEGREES 15 DEGREES Measured 85%5 85% -MEASURED DATA Simulated 88.0% -MEASURED DATA 80% Pack discharge capacity 100 ×10⁻³ 99 10 98 factor 97 96 Make predictive model Degradation 95 Capacity. 5 94 93 Use all available test data and construct a 92 model capable of predicting the data it is 91 calibrated to 90 Use this model to simulate aging behaviour _ SOC (-) remperature (K) ahead in time or for different use cases that


aren't in the planned testing

Software in the Loop – AutoLion1D


GT-AutoLion model for SiL

GT **A**utoLion

- GT-AutoLion provides insight into immeasurable variables which is powerful in software development
- E.g. How know SOC without a SOC model, how to make a model when SOC is not known
 (difficult to measure online)
- The GT-AutoLion provides the "truth", Li+stoichiometry, and can therefore be used to design the initial SOC model before any test data is available

 This of course applies to aging as well, with AutoLion the aging is resolved in time and therefore it's poge WISN 502 - (Rwn, CBMS, 1, Silve)

