
WHAT‘S 
ALL THE

FUZZ 
ABOUT?!



This IT security event was organized and hosted by Code Intelligence in Bonn on June 27, 2019.

The event’s objective was to discuss current projects and latest developments in cybersecurity 
with a focus on fuzzing. Leading experts in the field were invited on this day to give talks and lead 
 discussions on  fuzzying and similar  techno lo    gies. There was also plenty of room for networking and 
one-on-one discussions.

The presentations took place in the Digital Hub co-working area located in Bonner Bogen, an up-
coming area of Bonn overlooking the Rhine river. Code Intelligence additionally made its company 
rooms located in the same building available for the breakout sessions. 

The event brought together IT security specialists, lead developers, CTOs and IT project managers 
from different industries. Four talks on a wide range of topics regarding IT security were delivered as 
well as three breakout sessions conducted in small groups.

Various drinks, fruit, and snacks were provided as refreshments. A local Indian food truck served 
lunch and the event finished off in a relaxed atmosphere with a  barbe cue and some beers.

What’s all the fuzz 
about?



Marc explained how he and other hostages were 
able to survive through supporting each other 
and acting as a team. He went on to talk about 
how companies and individuals can use the same 
 strategies for crisis management. 

When facing a crisis, the first important thing 
is to accept the situation at hand: it makes no 
 sense to block out the problem or to go through 
 alternative scenarios. You should also try to think 
in a  positive and optimistic way. However, being 
too  optimistic may cause the company or the 
individual to  become euphoric thus preventing 
them from  taking the necessary preventive or 
 corrective steps.  Another important strategy is 
 strengthening the self-efficacy through helping 
others or  taking any kind of action, no matter how 
small. 

A
fter registration and a brief round of introduction, participants were offered two 
 keynote speeches. One of them was derived from personal experience and the other 
one was based on academic research papers.

Keynotes

How to Manage Crises and Flourish 
The event kicked off with a speech by Marc Wallert about managing crises in digital environment. 
Marc Wallert is a keynote speaker and resilience coach with 17 years of experience working in 
global companies. Marc shared his personal experience of being kidnapped by Islamic terrorists at 
the age of 27. He was captured together with a group of tourists in Malaysia, brought to the south of 
the Philippines and held hostage for 140 days, surviving harsh dschungel conditions and the constant 
threat of being killed by terrorists. 

The result of correct crisis management should be not just to overcome the crisis but also to learn 
from it and use it as a chance for development.

Foto: Marc Wallter



Foto: Prof. Dr. Thorsten Holz

• Redqueen is an engine based on fuzzing with input-to-state correspondence. Since the majority 
of existing fuzzers rely on coverage feedback and thus have drawbacks (e.g requiring the source 
code and not recognizing nested hashes), there came an idea to create a fuzzing engine that 
does not only feed inputs into a program but also influences the current state of the program 
through these inputs. Inputs that did not trigger any interesting behavior in the program are 
discarded, and the fuzzer thus “learns” the required input format. Redqueen is based on the 
same architecture kAFL tool uses. As an example, it enables fuzzing OS kernel components with 
a high level of efficiency.

• Nautilus engine concentrates on searching for deep bugs in software using  grammar structure 
input. It recognizes how the program tree is structured and at the same time uses a feedback 
loop to generate inputs to achieve a better code  coverage, i.e. reach as many edges and blocks 
of the program tree as possible. 

• Grimoire is a current project that attempts to bridge the gap between Redqueen and Nautilus  
(for cases when there is no grammar available, i.e. blackbox fuzzing). It tries to generalize and 
synthesize structure of inputs while fuzzing.

• AntiFuzz is being developed to make program code resistant to fuzzing. This can be used, for 
example, by companies to protect their code when making it available to customers.

Thorsten summarized his talk with mentioning some open questions and challenges regarding  fuzzing 
in academic world.

Academic View on Fuzzing 
The next speech, by Prof. Thorsten Holz, was  titled 
“How I Learned to Stop Worrying and Love Fuzzing”. 
Thorsten Holz is a professor at Ruhr University 
 Bochum. His research  interests are in the field of 
applied aspects of secure IT  systems and automa-
tically detected  software vulnerabilities. Further-
more, he is a  speaker of the Cluster of Excellence 
„CASA - Cyber  S ecurity in the Age of Large-Scale 
Attackers“.

Thorsten started his talk with a brief introduction 
of his research team and the topics they focus on: 
static and dynamic code analysis and  especially 
 fuzzing. Next, he described several papers on 
 fuzzing that his team has published in the past 
years.





fuzzing method, Khaled went on to talk about two 
main fuzzing methods: “dumb” fuzzing conducted 
with random inputs and  coverage-based fuzzing 
that includes information about code  structure 
and a seed corpus of inputs  aiming to reach 
 different parts of the code  structure. 

Next, the speaker described the fuzzing process 
using the example of libFuzzer - from writing 
fuzz targets to checking final results. The work-
shop  included a live demonstration of testing 
several        programs using fuzzying methods. He also 
 explained how sanitizers (tools for error detection) 
work and how fuzzing can be improved through 
using a seed corpus of inputs and token syntax 
dictionaries. The workshop finished off with an 
overview of current challenges in fuzzing and how 
they can be solved.

A
fter a short break, event attendees were offered three breakout sessions running in 
parallel. These sessions were repeated in the afternoon, so that each attendee got a 
chance to participate in two sessions out of three. 

Breakout Sessions

Fuzzing 101
The first breakout session explained the basics of fuzzing technology and included some practical 
examples. The speaker, Dr. Khaled Yakdan, is a co-founder of Code Intelligence and an expert in 
binary code analysis. He also worked as a malware analyst at Fraunhofer FKIE in addition to his PhD. 
He deals with fuzzing on a binary level.

In the first part of his talk, Khaled provided an overview of different software testing methods 
(static and dynamic analysis as well as symbolic execution) and presented the advantages and 
 disadvantages of these methods. In the second part, he focused on fuzzing as a dynamic software 
testing technique. Fuzzing monitors the performance of the target software while providing random, 
invalid or unexpected inputs to it. After briefly talking about the history and  development of the

Foto: Dr. Khaled Yakdan



Foto: Sirko Höer

• The need to cross-compile the code

• There are hardware limitations (e.g. slow processors & limited memory space of fuzzed devices)

• Many IoT devices have their own operating system

At this point, Sirko described the approach for embedded systems that is currently being  developed by 
Code Intelligence GmbH. The essence of this approach is breaking the testing into modules,  creating 
corresponding fuzz targets and fuzzing them separately. During this process, a seed corpus of testing 
inputs can be derived that can be used for integration tests and later on for system tests. 

Sirko went on to introduce QEMU emulation software that can be applied in testing embedded 
 devices. This was followed by a live demonstration of modifying libFuzzer for arm processor testing 
and fuzzing with QEMU User mode. The result was that QEMU user mode had better performance than 
running the tests on SoC devices but had less executions per second for most of the fuzzed modules. 
After running module tests as unit tests, integration tests are also conducted in QEMU environment 
and system/hardware tests are normally run by the manufacturer of the device. 

The presentation was followed by a lively discussion on introduced approach and what limitations and 
advantages it can have in practice.

Fuzzing for Embedded Systems 
The second break-out session, “Challenges of 
 Fuzzing for Embedded Systems” was  conducted by 
Sirko Höer from Code Intelligence GmbH. Sirko is 
responsible for vulnerability research in  embedded 
systems and has over 10  years of experience in the 
area of cybersecurity.

He started his presentation with an  explanation 
of what embedded systems are. He also brought 
some hardware to show how  these systems 
 physically look. After a brief  excursion into the 
main fuzzing principles and  types of fuzzing 
 techniques, he stated that the main problems of 
fuzzing on IoT devices are:



Foto: Sergej Dechand

Fuzzing in Practice
The third workshop was run by Sergej Dechand, one of the founders of Code Intelligence. He is an ex-
pert in usability aspects of IT security and worked as a project manager at Fraunhofer FKIE Institute.

Sergej dedicated his workshop to explaining the goal of Code Intelligence as a company. He started 
with an overview of software development process and specifically an overview of the testing process 
within it. He mentioned different testing methods used by the companies: static analysis, unit testing 
and penetration testing. 

Fuzzing, together with symbolic execution, belongs to the domain of penetration testing. Proper pe-
netration testing is challenging in practice because a lot of developers neglect testing due to the lack 
of time and the lack of expertise regarding the available security tools. On the other hand, external 
penetration testers lack the domain knowledge and need to gain insight into the software under test, 
which causes high expenditures and slows down the project. 

Sergej stated that the tool offered by Code Intelligence (CI Security Suite) offers easy access to mo-
dern testing techniques. It also contains a plugin that integrates into the IDE of the developer for easy 
set-up of fuzz tests. The speaker provided some examples on how this tool can be used in practice, 
for example for fuzzing of server applications. The session closed with an extensive question round 
regarding the functionality and features of the CI Security Suite.



Mathew highlighted that a lot of developers tend 
to focus on their main product goal and neglect 
security. Two cases were provided as examples: 
HTTPS certificate usage on Android devices and a 
study conducted with students and   professional 
developers on implementing user password 
 protection in software development process. 

In the second part, the presenter  covered a 
 qualitative study on security warnings.  A focus 
group of 33 participants were  interviewed on what 
kind of warnings they  preferred when writing 
code, how  often and when these warnings should 
be displayed. 

The final part was an outlook on how artificial 
 intelligence and usable security can be  combined 
to drastically improve software testing in the 
 future. 

I
n the afternoon, two more keynote speeches were offered. The first one examined the human 
component in software design and testing, whereas the other one focused on research in the 
field of symbolic execution testing.

Keynotes

Human-Centric Software Testing
After lunch, the event continued with a presentation on human-centric software testing by Prof. 
Matthew Smith. Matthew is an internationally known expert for usable security and privacy. He is a 
professor at Bonn University and a member of Fraunhofer FKIE Institute in Bonn. Recently he has 
also become a member of the „Wise Council of Cybersecurity“. 

In the first part of his presentation, Matthew gave a brief introduction on usable security and privacy. 
Usable security examines how developers can make their software and interfaces more usable for 
the end user without compromising on security.

Foto: Matthew Smith



Foto: Sebastian Pöplau

KLEE explores the program and  generates test cases to reproduce any crashes it finds. 

Though symbolic execution in theory can find inputs for any feasible path, it is still rather slow 
 compared to fuzzing and requires complete source code and a lot of work to set up. There have been 
attempts to combine fuzzing and symbolic execution, for example in a tool called Driller. 

Sebastian also provided an overview of other engines for symbolic execution, mostly further 
 developments of KLEE, which can be used for various practical purposes. According to the speaker, 
symbolic execution remains an area of active research.

Symbolic Execution: 
 Complementing Fuzzing 
The last presentation of the day was conducted 
by Sebastian Pöplau. Sebastian Pöplau is a PhD 
 student in the Software and Systems Security 
group of Eurecom (France), under the  supervision 
of  Aurélien Francillon. In his PhD research, he 
 focuses on the security of embedded devices, 
 moving from low-level software to hardware 
aspects. His presentation was called  “Symbolic 
Execution: Complementing Fuzzing with Logical 
Reasoning”. 

After introducing himself, he gave a definition of 
symbolic execution. As opposed to fuzzers, which 
generate inputs traditionally without taking code 
structure into account, symbolic execution tools 
precisely capture the computation of each value. 
They use solvers at each brunch to generate new 
inputs and thus to provide the precisely calculated 
input to cover all parts of code.

Sebastian moved on to describe symbolic execut-
ion in more detail using the example of KLEE. It 
is an open source instrument that runs on bitco-
de, usually compiled from source code by clang 
 compiler. 



Get in touch 

Jonathan Reimer

+49 228 2869 5830

sales@code-intelligence.com

www.code-intelligence.com

Conclusion
“What’s all the fuzz about?” was the first big event on fuzzing topics organized by Code Intelligence 
and it turned out to be a success. The event was conducted in an open atmosphere and offered a 
lot of possibilities for discussion and networking. 

Here is some feedback provided by the participants:

“The talks were of high quality and demonstrated the depth of technical 
knowledge.”
“I found the presentations to be very interesting. They motivated me to 
learn more about the topic of fuzzing.”
“I liked the personal and casual way of communication with the organi-
zers before and during the event.”
“I liked everything - from the way how the agenda was conveniently prin-
ted on the back of the badges to the selection of topics for presentations 
and workshops.”
“The event provided insights on how to easily integrate fuzzing into soft-
ware development process, showcased new applications for fuzzing and 
state-of-the-art technologies”.
“I enjoyed the event and the barbecue afterwards.”
“A big thanks to the orga-team for preparing the event and ensuring its 
smooth running.”



Code Intelligence GmbH
Rheinwerkallee 6

53227 Bonn

info@code-intelligence.de
www.code-intelligence.de


	Titelseite
	Seite 2
	Seite 6
	Seite 7
	Seite 26

