
code intelligence

Breakthrough Dynamic Application Testing
CI Fuzz is a state-of-the-art security testing software. It offers easy IDE integration that saves developers’ time and effort
while drastically improving the stability and reliability of the codebase.

Why Code Intelligence?
• Get access to state-of-the-art technology: Feedback-based fuzzing and concolic code execution

• Achieve reliable testing results: Almost no false positives due to the combination of dynamic and static analysis

• Improve the discovery of vulnerabilities: Higher code coverage

• No additional effort: IDE integration helps to define tests while writing the code

• Maximize your productivity: Browse and replay the found bugs and fix them more quickly

• Test when and where you need it: Fast and reliable source code testing integrates into your CI/CD process

Technical features
• Supplements feedback-based fuzzing with concolic execution

• Combines several fuzzing engines: AFL++, libFuzzer with
 Sanitizers and honggfuzz

• Additionally includes classic fuzzing approaches generating
 patterns such as radamsa

• Utilizes grammar-aware fuzzing for structured inputs

• Uses a framework similar to Qsym and Driller for concolic
 execution

• Includes, where applicable, APIs and network sockets into testing

Code Intelligence GmbH
Rheinwerkallee 6

53227 Bonn

www.code-intelligence.com

Follow us
@CI_GmbH

company/codeintelligence/

Kontakt
Jonathan Reimer

+49 151 14 09 1922

reimer@code-intelligence.com

Code Intelligence GmbH
Rheinwerkallee 6

53227 Bonn

www.code-intelligence.com

Follow us
@CI_GmbH

company/codeintelligence/

Kontakt
Jonathan Reimer

+49 151 14 09 1922

reimer@code-intelligence.com

code intelligence

Usability
CI Fuzz offers an easy to use interface to apply these advanced technologies. No deep technical knowledge of fuzzing is
required. Instead, users just define which functions or interfaces (e.g. network sockets) they want to have tested and our
software does the rest.

Our IDE plugin displays which parts of the code have been reached by the fuzzer and visualizes the fuzzing process. Found
crashes can also be replayed by starting the IDE’s debugger with the input causing the crash. Alternatively, you can inter-
act with the core software using the command line.

Continuous integration
Code Intelligence software easily integrates into a standard CI / CD workflow such as Jenkins, the fuzz tests are run
 automatically with each new code change and incidents are reported timely. We also handle special requests for fuzzing
on a Kubernetes cluster.

Methods used
• Initial static analysis

Our software - CI Fuzz - scans the source code to identify which parts can be tested dynamically and guide the
mutation engines by providing hints for data structures. If our static analysis identifies external interfaces such as
sockets or external API functions, we recommend fuzzing those interfaces.

• Dynamic testing

The application is tested during its execution. The output derived in the fuzzing process is analyzed and continuously
used as input for subsequent test runs. Due to execution testing, virtually all vulnerabilities can be discovered and
the number of false positives practically reduced to zero.

• Feedback-based fuzzing

The software under test is fed with inputs, which are purposefully mutated in the testing process. The fuzzer
gets feedback about the code covered during the execution of a given input. This allows the fuzzer to explore the
 program state efficiently and thus significantly increase the chances of triggering vulnerabilities.

