
Fuzzing
Challenges and Reflections

Marcel Böhme 
ARC DECRA Fellow 

Senior Lecturer (A/Prof) 
Monash University

 @mboehme_

Abhik 
Roychoudhury

Cristian 
Cadar

Marcel 
Böhme

Organizers

Kostya 
Serebryany 

@Google

Patrice 
Godegroid
@Microsoft

Keynote Speakers
2019 Shonan Meeting on 
Fuzzing and Symbolic Execution: 
Reflections, Challenges, and Opportunities

Fuzzing: Challenges

Caroline Lemieux
 @cestlemieux

Live Tweets bringing discussions to the larger community

Survey validating our findings with the larger community

Reflections

The Internet and the world’s Digital Economy
runs on a shared, critical OSS infrastructure
that no one is accountable for.

we are all stakeholders of secure open-source.

• Encryption/Decryption (openssl, gnutls, cryptlib, mbed, wolfssl)

• Compression (bzip2, brotli, gzip, lzma, xz, lz4, libarchive)

• Streaming (ffmpeg, gstreamer, libvlc)
• Parser libraries (xml, json, jpg, png, gif, avi, mpg, pcre)

• Databases (mysql, redis, postgre, derby, sqlite)

• Compilers/Interpreter (gcc, llvm [clang,..], php, javascript)
• Protocol implementations (http/http2, ftp, smtp, ssh, tls/ssl, rtsp)

• Server implementations (httpd, nginx, node.js, tomcat, lighthttpd)

• Operating systems (ubuntu, debian, android, glibc)

$ git clone https://github.com/google/oss-fuzz
$ ls -1 oss-fuzz/projects | wc -l
356

The Internet and the world’s Digital Economy
runs on a shared, critical OSS infrastructure
that no one is accountable for.

Reflections we are all stakeholders of secure open-source.

https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz

https://www.darpa.mil/program/cyber-grand-challenge

Reflections fuzzing is having substantial impact!

Reflections what enabled this recent surge of interest?

• There is a tremendous need for automatic vulnerability discovery.

• There is a tremendous need for automatic vulnerability discovery.

Reflections what enabled this recent surge of interest?

From https://www.varonis.com/blog/cybersecurity-statistics/

http://dw.com
http://dw.com

• There is a tremendous need for automatic vulnerability discovery.

SecurityWeek.com

VentureBeat.com

Reflections what enabled this recent surge of interest?

• There is a tremendous need for automatic vulnerability discovery.

Reflections what enabled this recent surge of interest?

Reflections what enabled this recent surge of interest?

• There is a tremendous need for automatic vulnerability discovery.

• We now have the incentives and the required mindset.

https://www.hackerone.com/press-release
https://www.hackerone.com/press-release

• There is a tremendous need for automatic vulnerability discovery.

• We now have the incentives and the required mindset.

https://www.hackerone.com/press-release

Reflections what enabled this recent surge of interest?

https://www.hackerone.com/press-release
https://www.hackerone.com/press-release

• There is a tremendous need for automatic vulnerability discovery.

• We now have the incentives and the required mindset.

• We now have the tools for automatic vulnerability discovery.

Reflections what enabled this recent surge of interest?

https://www.hackerone.com/press-release
https://www.hackerone.com/press-release

• There is a tremendous need for automatic vulnerability discovery.

• We now have the incentives and the required mindset.

• We now have the tools for automatic vulnerability discovery.

• open-source and freely available.

• easy to use (modulo Matt’s concerns 😅)

• very successful in finding bugs!

Reflections what enabled this recent surge of interest?

https://www.hackerone.com/press-release
https://www.hackerone.com/press-release

• There is a tremendous need for automatic vulnerability discovery.

• We now have the incentives and the required mindset.

• We now have the tools for automatic vulnerability discovery.

• Meaningful engagement between industry and academia  
(via open-science) leading to rapid advances in fuzzing!

Reflections what enabled this recent surge of interest?

https://www.hackerone.com/press-release
https://www.hackerone.com/press-release

• There is a tremendous need for automatic vulnerability discovery.

• We now have the incentives and the required mindset.

• We now have the tools for automatic vulnerability discovery.

• Meaningful engagement between industry and academia  
(via open-science) leading to rapid advances in fuzzing!

 Entropic @ 
ClusterFuzz

Reflections what enabled this recent surge of interest?

Community 
building

Industry 
adoption

https://www.hackerone.com/press-release
https://www.hackerone.com/press-release

• There is a tremendous need for automatic vulnerability discovery.

• We now have the incentives and the required mindset.

• We now have the tools for automatic vulnerability discovery.

• Meaningful engagement between industry and academia  
(via open-science) leading to rapid advances in fuzzing!

https://github.com/AFLplusplus

Reflections what enabled this recent surge of interest?

Industry 
adoption

https://www.hackerone.com/press-release
https://www.hackerone.com/press-release
https://github.com/AFLplusplus
https://github.com/AFLplusplus

• There is a tremendous need for automatic vulnerability discovery.

• We now have the incentives and the required mindset.

• We now have the tools for automatic vulnerability discovery.

• Meaningful engagement between industry and academia  
(via open-science) leading to rapid advances in fuzzing!

FuzzBench (compute resources and 
infrastructure for fuzzer benchmarking)

Paper Reviews et al. (twitch.tv/gamozo)

Reflections what enabled this recent surge of interest?

@infernosec

https://www.hackerone.com/press-release
https://www.hackerone.com/press-release
https://www.twitch.tv/gamozo
http://twitch.tv/gamozo
http://twitch.tv/gamozo
https://twitter.com/infernosec
https://twitter.com/infernosec

Disclaimer:
We put forward only questions.

We have no answers (only ideas).

Challenges

• Automating vulnerability discovery.
Considered most important challenge.

Challenges

• Automating vulnerability discovery.

• [C.1] How can we fuzz more types of software systems?

Challenges

• Automating vulnerability discovery.

• [C.1] How can we fuzz more types of software systems?

We know how to fuzz command line tools (e.g., AFL).
We know how to fuzz individual units / functions (e.g., libfuzzer).

What about cyber physical systems, machine learning systems,
stateful software, polyglot software, GUI-based software, .. ?

Challenges

• Automating vulnerability discovery.

• [C.1] How can we fuzz more types of software systems?

• [C.2] How can the fuzzer identify more types of vulnerabilities?

Challenges

• Automating vulnerability discovery.

• [C.1] How can we fuzz more types of software systems?

• [C.2] How can the fuzzer identify more types of vulnerabilities?

• How to detect various side-channels  
(incl. information leaks)?

• How to detect domain-specific vulns.  
(incl. sandbox escapes, kernel exploits)?

• How to detect language-specific vulns?

• How to detect other causes of 
arbitrary / remote code execution?

Challenges

We need to go beyond memory corruption bugs (ASAN, TSAN).

• Automating vulnerability discovery.

• [C.1] How can we fuzz more types of software systems?

• [C.2] How can the fuzzer identify more types of vulnerabilities?

• [C.3] How can we find “deep bugs” that have evaded detection?

Challenges

• Automating vulnerability discovery.

• [C.1] How can we fuzz more types of software systems?

• [C.2] How can the fuzzer identify more types of vulnerabilities?

• [C.3] How can we find “deep bugs” that have evaded detection?

• How to mine dictionaries, grammars, and protocols?

• How to identify input dependencies (e.g. checksums)?

• How identify and rectify fuzzer roadblocks?

Challenges

• Automating vulnerability discovery.

• [C.1] How can we fuzz more types of software systems?

• [C.2] How can the fuzzer identify more types of vulnerabilities?

• [C.3] How can we find “deep bugs” that have evaded detection?

• [C.4] What is the empirical nature of undiscovered vulnerabilities?

Challenges

• Which types of vulnerabilities are
difficult to discover by fuzzing and why?

• What are fuzzer roadblocks?

https://github.com/gamozolabs/cookie_dough
@gamozolabs

https://twitter.com/gamozolabs
https://twitter.com/gamozolabs

• Automating vulnerability discovery.

• The human component in fuzzing.

• [C.5] HITL: How can fuzzers leverage the ingenuity of the auditor?

Challenges

We need the auditor-in-the-loop.

• Automating vulnerability discovery.

• The human component in fuzzing.

• [C.5] HITL: How can fuzzers leverage the ingenuity of the auditor?

Challenges

@NedWilliamson
Project Zero

1. Write a good fuzzer harness
2. Identify fuzzer roadblocks (via code coverage).
3. Patch out roadblocks.
4. Goto 2 - until vulnerability is found.
5. Patch back roadblocks, “repair” reproducer.

Challenges

• Automating vulnerability discovery.

• The human component in fuzzing.

• [C.5] HITL: How can fuzzers leverage the ingenuity of the auditor?

• [C.6] Usability: How can we improve the usability of fuzzing tools?

Challenges

• Automating vulnerability discovery.

• The human component in fuzzing.

• [C.5] HITL: How can fuzzers leverage the ingenuity of the auditor?

• [C.6] Usability: How can we improve the usability of fuzzing tools?

Fuzzing in Continuous Integration / Deployment
Fuzzing in IDEs (JUnit-like Fuzzing)
Fuzzing in processes (Fuzz-driven Development)

We need

Challenges

• Automating vulnerability discovery.

• The human component in fuzzing.

• [C.5] HITL: How can fuzzers leverage the ingenuity of the auditor?

• [C.6] Usability: How can we improve the usability of fuzzing tools?

Fuzzing in Continuous Integration / Deployment
Fuzzing in IDEs (JUnit-like Fuzzing)
Fuzzing in processes (Fuzz-driven Development)

Challenges

• Automating vulnerability discovery.

• The human component in fuzzing.

• Fuzzing theory and scientific foundations.

Considered second most important challenge.

Challenges

• Automating vulnerability discovery.

• The human component in fuzzing.

• Fuzzing theory and scientific foundations.

• [C.7] How can we assess residual security risk if the fuzzing campaign was unsuccessful?

• [C.8] What are fundamental limitations of each approach?

How much more efficient is an attacker that has
an order of magnitude more computational resources?

When to stop fuzzing? How to deal with adaptive bias?

We need foundations.

Evaluation and Benchmarking

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

• What makes a fair fuzzer benchmark?

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking

• What makes a fair fuzzer benchmark?
• [C.9] How can we evaluate specialised fuzzers?

• Works only in a specific program domain 

Command line, parser libraries, network protocols, GUIs, browsers, compilers, kernels, Android apps)

• Focusses on a specific use case 
CI/CD [directed fuzzers], specific classes of bugs [UAF, concurrency, deserialization attacks]

• Suggestion was:

• Make available special benchmark categories for specialised fuzzers (as in Test-Comp).

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking

• What makes a fair fuzzer benchmark?
• [C.9] How can we evaluate specialised fuzzers?

• [C.10] How can we prevent overfitting to a specific benchmark?

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking

Goodhart’s Law
“When a measure becomes a target, it

ceases to be a good measure.” —

• What makes a fair fuzzer benchmark?
• [C.9] How can we evaluate specialised fuzzers?

• [C.10] How can we prevent overfitting to a specific benchmark?

• Suggestions were:

1. Submit and peer-review benchmarks in addition to fuzzers (Test-Comp).

2. Regularly evaluate on new and unseen benchmarks (Rode0Day).

3. Continuous evaluation on a large and growing set of 
diverse, real-world benchmarks (FuzzBench).

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking

Goodhart’s Law
“When a measure becomes a target, it

ceases to be a good measure.” —

https://rode0day.mit.edu/
https://google.github.io/fuzzbench/faq/#how-can-you-prevent-researchers-from-optimizing-their-tools-only-for-these-benchmarks
https://rode0day.mit.edu/
https://google.github.io/fuzzbench/faq/#how-can-you-prevent-researchers-from-optimizing-their-tools-only-for-these-benchmarks

• What makes a fair fuzzer benchmark?

• What is a good measure of fuzzer performance?

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking

Considered third most important challenge.

• What makes a fair fuzzer benchmark?

• What is a good measure of fuzzer performance?

• [C.11] Are synthetic bugs representative?

• Fuzzer developers can synthesize  

a large number of benchmark subjects  
for their special use case, or domain.

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking

• What makes a fair fuzzer benchmark?

• What is a good measure of fuzzer performance?

• [C.11] Are synthetic bugs representative?

• Fuzzer developers can synthesize  

a large number of benchmark subjects  
for their special use case, or domain.

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking

“Time to retire Lava & CGC, they are actively harmful” 
 KCC @ Shonan

“I really like the direction [..] of generating programs. [..] 
 These random programs found an RNG bug in honggfuzz.” 
 Brandon Falk @ Twitter

• What makes a fair fuzzer benchmark?

• What is a good measure of fuzzer performance?

• [C.11] Are synthetic bugs representative?

• [C.12] Are real bugs representative?

• Is your set of real bugs large enough to be representative?

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking

Magma has 114 CVEs + 4 bugs  
in 7 open-source C programs.

• What makes a fair fuzzer benchmark?

• What is a good measure of fuzzer performance?

• [C.11] Are synthetic bugs representative?

• [C.12] Are real bugs representative?

• Is your set of real bugs large enough to be representative?

• Are discovered bugs representative of undiscovered bugs?

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking

• What makes a fair fuzzer benchmark?

• What is a good measure of fuzzer performance?

• [C.11] Are synthetic bugs representative?

• [C.12] Are real bugs representative?

• [C.13] Is code coverage a good measure of fuzzer effectiveness?

• Measuring coverage achieved is cheaper than measuring the number of bugs found.

• Coverage feedback is the classic measure of progress in greybox fuzzing.

• If small correlation, how are bugs/vulnerabilities distributed over the code?

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking

We need more empirical studies.

• What makes a fair fuzzer benchmark?

• What is a good measure of fuzzer performance?

• [C.11] Are synthetic bugs representative?

• [C.12] Are real bugs representative?

• [C.13] Is code coverage a good measure of fuzzer effectiveness?

• [C.14] What is a fair choice of time budget?

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking

We need more empirical studies.

• What makes a fair fuzzer benchmark?

• What is a good measure of fuzzer performance?

• How do we evaluate techniques, not implementations?

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking
FuzzBench
• Continuous benchmarking.

• Open-source (Submit PRs).

• Submit your fuzzer.

• Submit your benchmarks.

• Submit your feature requests.

• Free Compute !!!

hexhive Magma

Test-Comp  
Tool Competition

And m
any others…

!

The Internet and the world’s Digital Economy
runs on a shared, critical OSS infrastructure
that no one is accountable for.

Opportunities

The Internet and the world’s Digital Economy
runs on a shared, critical OSS infrastructure
that no one is accountable for.

• How do we address this at scale?

• Open-source, open-science, open discourse

• has fostered a meaningful engagement between industry and academia,

• has fostered tremendous recent advances

• in symbolic execution-based whitebox fuzzing, and

• in coverage-guided greybox fuzzing.

Opportunities

The Internet and the world’s Digital Economy
runs on a shared, critical OSS infrastructure
that no one is accountable for.

• How do we address this at scale?

• Open-source, open-science, open discourse

• has fostered a meaningful engagement between industry and academia,

• has fostered tremendous recent advances

• in symbolic execution-based whitebox fuzzing, and

• in coverage-guided greybox fuzzing.

Opportunities

@Cppcon

The Internet and the world’s Digital Economy
runs on a shared, critical OSS infrastructure
that no one is accountable for.

• How do we address this at scale?

• Open-source, open-science, open discourse.

• Educate developers and students on fuzzing.

Opportunities

The Internet and the world’s Digital Economy
runs on a shared, critical OSS infrastructure
that no one is accountable for.

• How do we address this at scale?

• Open-source, open-science, open discourse.

• Educate developers and students on fuzzing.

• Develop educational content, such as tutorials and textbooks.

• Integrate software security courses into university curriculum.

Opportunities

An ethical hacker about  
https://fuzzingbook.com

pwn.college: MOOC-style ASU Computer Systems Security / CTF course

https://fuzzingbook.com
https://fuzzingbook.com

The Internet and the world’s Digital Economy
runs on a shared, critical OSS infrastructure
that no one is accountable for.

• How do we address this at scale?

• Open-source, open-science, open discourse.

• Educate developers and students on fuzzing.

• Get organised and support others.

• As organization, take matters into your hands.

• Adopt fuzzing (e.g., in continuous integration).

• Make your tools available as open-source.

• Establish competitive bug bounty programs.

• Join cross-organisational security efforts. 
(Open Source Security Foundation; https://openssf.org/)

Opportunities

https://openssf.org/
https://openssf.org/

The Internet and the world’s Digital Economy
runs on a shared, critical OSS infrastructure
that no one is accountable for.

• How do we address this at scale?

• Open-source, open-science, open discourse.

• Educate developers and students on fuzzing.

• Get organised and support others.

• As organization, take matters into your hands.

• As individual, take matters into your hands.

• Join the fuzzing community

• Submit PRs to Klee, AFL++, LLVM LibFuzzer, OSS-Fuzz,…

• Make your tools available as open-source.

• Organize and support hackathons, capture-the-flags,  
hacking clubs, ethical hackers.

• Support an open-source project  
(e.g., add it to OSSFuzz or fund it on hackerone.com).

Opportunities

2019 Cyber Security  
 Challenge Australia (CySCA)@

http://hackerone.com
http://hackerone.com

•What enabled this recent surge of interest?

• There is a tremendous need for automatic vulnerability discovery.

• We now have the incentives and the required mindset.

• We now have the tools for automatic vulnerability discovery.

• Meaningful engagement between industry and academia  
(via open-science) leading to rapid advances in fuzzing!

Reflections

Challenges

• Automating vulnerability discovery.

• The human component in fuzzing.

• Fuzzing theory and scientific foundations.

• What makes a fair fuzzer benchmark?
• What is a good measure of fuzzer performance?

• How do we evaluate techniques, not implementations?

Which fuzzer finds a larger number of important bugs
within a reasonable time in software that we care about?

Evaluation and Benchmarking The Internet and the world’s Digital Economy
runs on a shared, critical OSS infrastructure
that no one is accountable for.

• How do we address this at scale?

• Open-source, open-science, open discourse.

• Educate developers and students on fuzzing.

• Get organised and support others.

Opportunities

https://www.hackerone.com/press-release
https://www.hackerone.com/press-release
https://twitter.com/infernosec
https://twitter.com/infernosec

