
Top N challenges
of "deep" fuzzing
Kostya Serebryany <kcc@google.com>

FuzzCon Europe, September 2019

mailto:kcc@google.com

Sanitizing Google’s & everyone’s C++ code since 2008

● Testing: ASan, TSan, MSan, UBSan (KASAN, etc for kernel)

● Fuzzing: libFuzzer, Syzkaller, OSS-Fuzz, Libprotobuf-mutator

○ Fuzzing At Google Today And Tomorrow (Shonan 2019-09)

○ Also: building a specialized fuzzer for a proprietary system

● Hardening in production: LLVM CFI, ShadowCallStack, UBSan

● Testing in production: GWP-ASan

● Hardware-assisted memory safety (Arm MTE)

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://llvm.org/docs/LibFuzzer.html
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf
https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
https://github.com/google/libprotobuf-mutator
https://github.com/google/fuzzing/blob/master/docs/FuzzingAtGoogleTodayAndTomorrow-Shonan-2019-09.pdf
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ShadowCallStack.html
http://llvm.org/docs/GwpAsan.html
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/MTE-iSecCon-2018.pdf

“Deep” fuzzing is not the most important

● How to define “Deep” fuzzing?
○ Find more bugs?
○ Discover more control flow edges? More code paths? More data flows?
○ More “what else”?

● More important to Fuzz:
○ Wide: apply fuzzing to more code
○ Often: fuzzing as part of CI, starting with pre-submit
○ Incrementally: focus on the recently changed code
○ Early: design software with fuzzability in mind (fuzz-driven-development)
○ Naturally: design programming languages with fuzzability in mind
○ Young: fuzzing in CS education

● Still, “deep” is interesting
○ Lots of existing fuzz targets. Code owners need to stay ahead of adversaries
○ Fun research

http://n6kp

Guided fuzzing

● Acquire the “seed corpus”
● while(true)

○ Choose input(s)
○ Mutate / crossover
○ Execute: find bugs, collect control flow, data flow, whatever else
○ Update the corpus: maybe expand, maybe shrink

Every step here needs an improvement!

Guided fuzzing

● Acquire the “seed corpus”
● while(true)

○ Choose input(s)
○ Mutate / crossover
○ Execute: find bugs, collect control flow, data flow, whatever else
○ Update the corpus: maybe expand, maybe shrink

Every step here needs an improvement!

Seed corpus

● File formats: crawl the web
● Use corpus from other fuzz targets

○ Crash Windows USB via Fuzzing Linux USB
○ OSS-Fuzz: corpus of one SSL implementation crashes another. Same for font libs.

● Monitor the live system, scavenge “interesting” inputs
○ Choosing what’s “interesting” with a non-instrumented build; or instrumented build in prod
○ Privacy issues, etc
○ How to automate?
○ Better integration of fuzz targets and production code

● Feedback loop from production bugs, e.g. GWP-ASan
○ Some early one-off success cases, but no automation

https://www.youtube.com/watch?v=1MD5JV6LfxA&t=50m30s
http://llvm.org/docs/GwpAsan.html

Guided fuzzing

● Acquire the “seed corpus”
● while(true)

○ Choose input(s)
○ Mutate / crossover
○ Execute: find bugs, collect control flow, data flow, whatever else
○ Update the corpus: maybe expand, maybe shrink

Every step here needs an improvement!

● Frequent question: when to stop fuzzing?
● Frequent answer: never

○ More time => more chance to find something new
○ Tools evolve
○ Code evolves

● Diminishing returns after some point
○ Assuming the code/tools don’t change
○ How do we know when to stop?
○ And when to restart?

● With 350+ projects and growing, OSS-Fuzz starts to cost quite a bit

while (true)

Guided fuzzing

● Acquire the “seed corpus”
● while(true)

○ Choose input(s)
○ Mutate / crossover
○ Execute: find bugs, collect control flow, data flow, whatever else
○ Update the corpus: maybe expand, maybe shrink

Every step here needs an improvement!

Choosing inputs to mutate / crossover

● k inputs in the corpus
● compute W(i) (i=1..k), the weight of i-th input

● Naive: uniform W(i) = 1 / k
● Naive (libFuzzer): prefer most recent, W(i) ~= 2 * i / (k*k)
● Less naive (Entropic): favor inputs with “infrequent” control flow edges

● Open question: is this important?
○ Entropic vs libFuzzer shows considerable improvement in short runs (hours, days)
○ No sign of improvement in long runs (weeks, months)

● Same problem for choosing pairs/tuples for crossover
○ I’m not aware of research on crossover!

https://mboehme.github.io/paper/FSE20.Entropy.pdf

Guided fuzzing

● Acquire the “seed corpus”
● while(true)

○ Choose input(s)
○ Mutate / crossover
○ Execute: find bugs, collect control flow, data flow, whatever else
○ Update the corpus: maybe expand, maybe shrink

Every step here needs an improvement!

Mutation: structure-aware

● Input is not a bag of bytes, but a highly structured input
○ Syntax tree? Graph? Compressed? Encrypted? With checksums?

● Libprotobuf-mutator: input is a protobuf (same: thrift, etc)
○ Can describe anything as proto, see e.g. SockPuppet
○ Creating/maintaining protos for non-proto APIs is time consuming

● Syzkaller: input is a sequence of syscalls with constraints
○ Creating syscall descriptions is time consuming

● Open question: how to automate?
○ File format => proto
○ Sequence of API calls => proto

https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://github.com/google/libprotobuf-mutator
https://github.com/facebook/fbthrift
https://googleprojectzero.blogspot.com/2019/12/sockpuppet-walkthrough-of-kernel.html
https://github.com/google/syzkaller

Mutation: guided

● Input and desired new behavior => produce an interesting mutation
● Extreme case: symbolic (concolic) execution

○ scalability challenges

● Limited data flow guidance
○ Capture bytes flowing into conditionals (or memcmp, strcmp, etc)
○ Substitute “left” with “right” in the input
○ libFuzzer, honggfuzz, AFL++, go-fuzz?

● Complete data flow traces
○ Use taint analysis (DFSan) to mark correspondence {input byte} => {conditional statement}
○ Mutate only the bytes that affect the target conditions
○ Early signs that it works great, but far from wide use

https://github.com/google/oss-fuzz/issues/1632
https://clang.llvm.org/docs/DataFlowSanitizer.html

Mutation: guided and structure-aware?

● Not hard in principle, but not aware of any implementations

Mutation: how to choose a sequence of mutations?

● MOpt: Optimized Mutation Scheduling for Fuzzers
● Is this a taks for ML?

https://www.usenix.org/system/files/sec19-lyu.pdf

Guided fuzzing

● Acquire the “seed corpus”
● while(true)

○ Choose input(s)
○ Mutate / crossover
○ Execute: find bugs, collect control flow, data flow, whatever else
○ Update the corpus: maybe expand, maybe shrink

Every step here needs an improvement!

Execution: find bugs

● What bugs can we find?
○ Memory safety, assertion failures, resource exhaustion, etc (boring)
○ Logical bugs?
○ ?

● Differential fuzzing: compare implementation A with implementation B
○ Self-differential: assert(2*X == X + X); // for a bignum class
○ Compare two revisions of the same code

● Round-trip: assert(Uncompress(Compress(Input)) == Input)

Execution: collect control flow

● Everyone uses “coverage”, a.k.a. control flow edges
● Compiler options for better signal?

○ Prohibit optimizations that fold control flow or build with -O0?
○ More inlining or less inlining?
○ Function cloning? (Or, context-aware code coverage)

● Someone else’s control flow (differential fuzzing)
○ Nezha fuzzer: multiply my control flow by someone else’s

https://github.com/nezha-dt/nezha

Execution: data flow

● Turn data flow into more control flow (laf-intel)
○ if (a == b) => if (HighBits(a) == HighBits(b) && LowBits(a) == LowBits(b))

● libFuzzer: value profiles
○ CMP(a, b) => feature[popcnt(a^b)]++;

■ Actively used
○ a[i] => feature[DistanceFromBounds(i)]++;

■ Not enabled, needs more research
● ???

https://lafintel.wordpress.com/

Execution: what else?

● What other signal can we extract from execution?
○ Time / space overhead (PerfFuzz)
○ Stack depth / call depths (libFuzzer)

● Requirements:
○ needs to be convertible into integers
○ needs to be ~ linear (maybe up to quadratic?) by the program size

■ e.g. full execution paths / traces are unlikely to ever work
●

https://github.com/carolemieux/perffuzz

Guided fuzzing

● Acquire the “seed corpus”
● while(true)

○ Choose input(s)
○ Mutate / crossover
○ Execute: find bugs, collect control flow, data flow, whatever else
○ Update the corpus: maybe expand, maybe shrink

Every step here needs an improvement!

Corpus expansion

● When to add an input to the corpus, when to evict?
● What is the ideal corpus size?

○ Trade off between preserving information and diluting useful inputs
● Preserve or evict slow / large inputs?

● Ankou Fuzzer: maximize minimal “distance” between corpus elements
○ Distance measured based on control flow
○ Can we add data flow to Ankou?

https://github.com/SoftSec-KAIST/Ankou

Misc: fuzzing stateful systems?

● Two typical approaches:
○ Pretend the system is not stateful
○ Reset the state on every input

● Syzkaller is an example (kernels have lots of state), but is highly specialized
○ Can we generalize?

Misc: evaluating fuzzers

● Hard to improve what you can’t measure
● FuzzBench: large scale, real-life targets

○ Also: fuzzer-test-suite (deprecated)
○ Meaningful results require lots of CPU

● Evaluate fuzzers while doing useful fuzzing?
○ Moving target, hard to reproduce results
○ Only fuzz targets with saturated corpus

● Evaluate structure aware fuzzers
● Retirement LAVA & CGC is overdue

○ Too small & artificial, benchmarks with main() are counterproductive

https://github.com/google/fuzzbench
https://github.com/google/fuzzer-test-suite

Misc: human in the loop

● On a saturated fuzz target, ask the developer to help
○ Visualize the “coverage frontier”, overlay with production coverage
○ Visualize the inputs reaching the frontier, and parts of inputs affecting the

frontier conditionals
○ Especially or structure aware fuzzing (e.g. protobufs)

● If there are bugs, or slow / large inputs, help prioritize the fixes
○ Not important in ideal case, where all bugs are fixed. But, …, well, you know

Summary

● Top N challenges of deep fuzzing:
○ Acquiring better seed corpus (e.g. with feedback from production)
○ Guided and structure-aware mutation
○ Smarter corpus expansion
○ Human in the loop

● Lots of interesting research and potential improvements
○ Please help us extend this TODO list :)

■ github.com/google/fuzzing/issues
■ {fuzzing-discuss,libfuzzer@googlegroups.com

https://github.com/google/fuzzing/issues
https://groups.google.com/g/fuzzing-discuss
https://groups.google.com/g/libfuzzer

