
Why Fuzzing Web Apps
is Hard

Simon Bennetts @psiinon
OWASP ZAP Project Lead

OpenSSF Security Tools WG
StackHawk Inc

2021 March 24

Whats ZAP?

● Tool for finding vulnerabilities in web apps
● Completely free and open source
● Worlds most frequently used web app scanner /

DAST tool

Fuzzing Vs DAST

● Both attack running systems
● Fuzzing – lots of ‘random’ data
● DAST – highly targetted attacks
● ZAP – manual fuzzing only

Problem: Time

● Time is the enemy of DAST tools
● ZAP active scan rule strengths:

− Low 6 reqs / param / page
− Medium 12
− High 24
− Insane 100s?

Problem: Time

● Example Site: 100 pages, average 5 params per page
− = 500 parameter targets

● 20 core active scan rules, medium strength (12 reqs)
● 500 x 20 x 12 = 120k requests
● 100 req/sec = 1,200 secs == 20 mins
● 10 req/sec = 12,000 secs == 200 mins == 3.3 hours

Problem: Time

● But then consider
− ~ 40 beta active scan rules
− Headers
− Path elements
− High attack strength

Problem: Time

● Example Site: 200 pages, 5 params + 5 headers + 4 path
elements per page (14)
− = 2,800 parameter targets

● 20 core + 40 beta scan rules, high strength (24 reqs)
● 2800 x 60 x 24 = 4,032,000 requests
● 100 req/sec = 40,320 secs == 672 mins == 11.2 hours
● 10 req/sec = 403,200 secs == 6720 mins == 112 hours

− = 4.6 days

Solutions: Time

● Make fewer requests
● More targetted requests
● Understand app structure better
● Speed up target system
● Live with it ;)

Problem: Discoverability

● Fuzzing functions – definitions via language
● SAST – access to all of the code
● Web apps have no definition
● API definitions exist, but often not available
● Unit tests great, but often don’t exist or not complete
● Crawlers / spiders help but have limitations

Solutions: Discoverability

● API definitions
● Site maps
● Comprehensive unit tests
● Use standard HTML controls

Problem: Good Test Data

● Register user form:

● Error: User name must be an email address

Register New User
User name:

Password:

Repeat password:

test

Register

Solutions: Good Test Data

● Comprehensive unit tests
● Manual configuration

Problem: Understanding web app structure

● DAST tools build up an internal map – ZAP Sites Tree
● App map too small: scan misses features

− URL parameters which represent site structure ..&page=home
− URL parameters which represent different actions ..&action=add

● App map too big: scan takes too long
− Database driven content ../company/team/..

Solutions: Understanding web app structure

● Autodetection (hard)
● Manual configuration

Problem: Authentication

● Too many authentication mechanisms
● Really hard to tell which is in use
● How to tell if authenticated or not?
● Anti-automation features
● Single Sign On

Solutions: Authentication

● Authentication tokens
● Turn it down / off! (in test environment;)
● Autodetection (hard)
● Manual configuration

Problem: Session Handling

● If not maintained then have to continually re-authenticate
● Cookie based straight forward
● Client side tricker
● Logout links
● Other session invalidating events

Solutions: Session Handling

● Autodetection (easier)
● Manual configuration
● Use ‘standard’ mechanisms

Problem: Issue Detection

● Some issues very visible in web UI
− Stack Traces
− Reflected XSS

● Others trickier
− Blind SQL
− Out of band issues

● DAST tools typically cant see inside an app

Solutions: Issue Detection

● Mostly down to the tool
● Manual configuration
● Server side detection (e.g. log analysis)
● OAST (Out of band App Service Testing)
● IAST (Interactive App Service Testing)

Summary of the Problems

● Time
● Discoverability
● Good Test Data
● Understanding Web App Structure
● Authentication
● Session Handling
● Issue Detection

Find Out More

● ZAP
− www.zaproxy.org
− @zaproxy

● OpenSSF Security Tools WG
− openssf.org

http://www.zaproxy.org/

