Stateful REST API Fuzzing
with RESTler

FuzzCon-Europe 2021

Marina Polishchuk
Microsoft Research

Joint work with: Patrice Godefroid, Vaggelis Atlidakis, Jamie Dauvis,
Richard Files, Bo-Yuan Huang, and Daniel Lehmann

Web APIls Everywhere

* Most cloud services programmatically accessed through REST APIs

* Many cloud backends are microservices with private APIs

* Services are rapidly evolving

* Need testing that keeps up with the pace of development and deployment

e How secure and reliable are the APIs?

TOTAL API COUNT

GROWTH IN WEB APIS SINCE 2005

22000
20000 — ’ ProgrammableWeb
18000

16000
14000
12000
10000
8000
6000
4000
2000

0
JANUARY JANUARY JANUARY JANUARY JANUARY JANUARY JANUARY
2006 2008 2010 2012 2014 2016 2018

MONTH

Outline

 Why Stateful REST API fuzzing?
* Introducing RESTler

* Types of bugs RESTler can find
 CI/CD

* Future work

Why Stateful REST API fuzzing?

Research started in 2017

Motivated by Microsoft-internal user feedback on gaps in existing
solutions:

* Fuzzing each request in isolation
— low coverage — most requests depend on some pre-created resources
—human in the loop required to guide the fuzzer

 Traffic capture and replay with fuzzing

— coverage depends on how comprehensive the recorded traffic is

* Manually written fuzzers

Why Stateful REST API fuzzing?

Research started in 2017

Motivated g
solutions: . o
Too expensive to create and maintain for
* Fuzzing large REST APIs (e.g. Azure services)
— low lrces
— hur

Important bugs missed
* Traffic

— COVerdge ueperius VIl 1uw LUITIPIENeErnsive Lie recurueu udliie 1s

* Manually written fuzzers

Example Bug

RESTler Y Service g

PUT /resources/CM/X {“val” : “12*3”, “region”: “US-West”}
500 Internal Server Error
@™ = % % % RN RN RN NN RN E RN RN EEEEEEEEEEEEEEEEEEE SN NN NN NN EEEEEENEEEE NN EEEEEENEEEEEEENEEEEEENEEEEEEEEEEEEEEEEEEEEEEEEE
GET /resources/CM
200 OK {}
@ = = = = mm e NN N RN NN NN N RN RN AN A NN AN EEE AN EEEEEEEEEEE NN NN NN EEN NN NENE NGNS EEEEESEESNEENSEEEEEEEEEEEEEEEEEEEEE
PUT /resources/CM/X {“val” : “123”, “region”: “US-Central”}
409 Conflict
= = % %% 5 e R RN RN RN E N R E R E AN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEAEEEAEENEEEEEEENEEEAEENEEEEEEEEEEEEEEEEEEEEEEEESE

RESTler L Service g

[Checking Security Properties of Cloud Service REST APIs, V. Atlidakis, P. Godefroid, M. Polishchuk, ICST’2020]

Example Bug: Resource Leak

Step 1: create a
new resource of
type CM with name
“X” in US-West
region with a
malformed body

Step 2: get a list of
all resources of

type CM

Step 3: create a
new resource of
type CM with name
“X”, but with a well-
formed body and in
a different region

PUT /resources/CM/X {“val” : “12*3”, “region”: “US-West”}

500 Internal Server Error

X is now a zombie resource,
not counted against the user’s quota —

an attacker can keep creating them
**Resource leak and potential DoS! **

200 OK {}

PUT /resources/CM/X {“val” : “123”, “region”: “US-Central”}

409 Conflict

To find this bug, you

need:

1. invalid inputs

2. valid inputs

3. carefully crafted
dependent
requests

|Checking Security Properties of Cloud Service REST APIs, V. Atlidakis, P. Godefroid, M. Polishchuk, ICST’2020]

RESTler: a Stateful REST API Fuzzer

Stateful:

» Tests are sequences of requests
* Arequest is only fuzzed if its pre-requisite resources can be created

* Fuzzing algorithm avoids redundant testing

Automatic:

* Uses the Swagger/OpenAPI specification to generate fuzzing grammar
* Published for many REST APIs, used to generate client SDKs

* Good coverage out of the box for simple, well-documented APIs

Extensible:
* Pluggable active property checkers

Hundreds of bugs found across Microsoft services in the past 3 years
RESTler open sourced on github November 2020

How RESTler works

RESTler RESTler
Compiler Test Engine

OpenAPI — RESTler — Tests &
Specification Grammar Bugs!

¢ Infer how to fuzz each request type % Generate & execute tests
*¢ Generate code to parse responses ** Analyze test results: feedback loop
¢ Identify producer-consumer to learn from past service responses

dependencies s Systematic state-space search

Example

blog/posts : Operations related to blog posts

/blog/posts/ Returns list of blog posts
so8 /blog/posts/ Creates a new blog post
/blog/posts/{id} Deletes a blog post with mathcing "id"
G388 /blog/posts/{id} Returns a blog post with matching "id"

Sample OpenAPI spec
(five requests)

RESTler
Compiler

—)

from restler import requests
from restler import dependencies

def parse_posts(data):
post_id = data[”id”]
dependencies.set_var(post_id)

request = requests.Request(
restler_static(’POST™),
restler_static(’/api/blog/posts/”),
restler_staticCCHTTP/1.17),
restler_static("{"),
restler_static(’body:”),
restler_fuzzable(’string™),
restler_static(’}”),
’post_send’: {
‘parser’: parse_posts,
’dependencies’: [
post_id.writer(),
1
}
)

Grammar fragment
(one HTTP request)

Example

from restler import requests
from restler import dependencies

def parse_posts(data):
post_id = data[”id”]
dependencies.set_var(post.id)

request = requests.Request(
restler_static("POST”),

restler_static(”/api/blog/posts/”),

restler_static("HTTP/1.17),
restler_static("{"),
restler_static(body:”),
restler_fuzzable(”string”),
restler_static(”}”),
"post_send’: {

‘parser’: parse_posts,

’dependencies’: [

post_id.writer(),
1

}
)

Grammar fragment
(one HTTP request)

RESTler
Test Engine

—)

(Sending: POST /api/blog/posts/ HT'TP/1.1
Accept: application/json

Content—Type: application/json

Host: localhost:8888
{”body”:’sampleString”}

Received: HTTP/1.1 201 CREATED
Content—Type: application/json
Content—Length: 37

Server: Werkzeug/0.14.1 Python/2.7.12
Date: Sun, 01 Apr 2018 05:10:32 GMT

{”’body”: "sampleString”, "id”: 5889}
.

A sample test
(one HTTP request)

Example

Fuzzing session
(100s tests/min)

— o (o]
o o (=]
o o o

Occurences Over Time
S
o

Test Cases
30 117 255 391 515 647 776

—4— HTTP Status: 201
~@- HTTP Status: 200
—»— HTTP Status: 404

~~ HTTP Status: 400
~W~ HTTP Status: 500

P - - —
v v

25 50 75 100 125 150 175
Time (seconds)

Example

Fuzzing session
(100s tests/min)

Sequence length 1

1. GET /blog/posts

2. POST /blog/posts

Code coverage (lines covered)

1 2
Request sequence length

Sequence length 2

1. POST /blog/posts { “body”: “a” }
GET /blog/posts/1

2. POST /blog/posts { “body”: “b” }
DELETE /blog/posts/2

3. GET /blog/posts
POST /blog/posts { “body”: 123 }

Sequence length 3

1. POST /blog/posts { “body”: “a” }
PUT /blog/posts/1 {“body”: “”}
DELETE /blog/posts/1

2. POST /blog/posts { “body”: “a” }
DELETE /blog/posts/2
GET /blog/posts

Outline

* Why Stateful REST API fuzzing?
* Introducing RESTler

* Types of bugs RESTler can find
 CI/CD

* Future work

Case Study: GitLab

* Open-source self-hosted Git service
of users)

 Complex REST API: ~300 request types
e RESTler found 28 new bugs

Example: 1. Create a project
2. Create a repo file with a proper commit
3. Delete the repo file with an empty commit message

- “500 Internal Server Error”

All these bugs have been fixed!

(see the [reference] below for details)

(mil

APl BFS BFS- Random- Intersection Union
Fast Walk

Commits | 5 1 5 1 5
Branches | 7 7 7 5 8
Issues 0 1 1 0 1
Repos 2 3 3 2 3
Groups 0 0 2 0 2
Projects | 2 1 3 1 3
Total 16 13 21 Y 22

TABLE III: Bug Buckets found by BFS, BFS-Fast, and Ran-
domWalk after Five Hours. Shows the sets of bugs found by each
search strategy in each APL In total: REST-ler found 22 new bugs.

[RESTler: Stateful REST API Fuzzing, ICSE’'2019]

Case Study: Azure DNS

* JSON payload fuzzing DNS service:
* Fuzz both the schema and data values « 13/13 covered request types

* Dynamically augment set of possible
inputs using past responses

4/13 with non-empty JSON-payload
Schema size: 2, 22, 65, and 65

{
“location”: {
“type”: “string” .
‘}”,cag”. { b o, o~ Found 202 different error code/message
“type”: “string”

“tag”: “conference-talk”,
“properties”: {

Found new 500 internal server errors

l’ . . “id”: “Microsoft”,
P “timeout”: -1 * In 3 out of 4 request types
€c. ’ . ({3 3 33} } .
type™: “string”, } * The one with no bug found has 2 nodes
}s + object .
string * 7 new bugs filed

“timeout”: {
“type”: “number”,

}

= [Intelligent REST API Data Fuzzing, FSE’2020]

number

Classes of bugs found by RESTler

* API specification
* Naming or type hierarchy inconsistencies (for dependencies) *
* Incorrect examples

Input validation
* Unhandled exception (e.g. 500 instead of /

* Authentication
* Unauthenticated APIs * A” these bugs are
* Able to access another user’s resourcs bEI ng ﬁxed | \

e Crashing authentication -> inaccessil
* Resource management

° i * %k . . .
Resource exhaustion Careful when fuzzing in Production
* Inability to create resource after error

* Create invalid resource (e.g. that can’t be referenced/

Data leaks * found during manual investigation
* Leaking debug data types * ** found by service alerts

When to do REST API fuzzing

* Developers
e During APl development
* CI/CD regression fuzzing
* Deployment validation

* Security engineers
* Bug hunt for specific classes of bugs

Outline

 Why Stateful REST API fuzzing?
* Introducing RESTler

* Types of bugs RESTler can find
* Cl/CD

* Future work

RESTler in CI/CD with RAFT

* RAFT is a self hosted REST API Fuzzing-As-A-Service platform

* Runs on Azure

* Supports several APl fuzzing and scanning tools, easy to onboard new tools
* Allows deploying service at time of fuzzing, if packaged in docker container
* For more details, see https://github.com/microsoft/rest-api-fuzz-testing

https://github.com/microsoft/rest-api-fuzz-testing

Cl/CD with RAFT

RAFT

Start),
RAFT),

job
Spin up containers
* Job-specified
Bug Found! tOOIS.
Create e Service Under
github issue Test
Push Run tests

code
Report results

|
[

Scalable parallel testing
Add support for new tools
without writing code
Secret management

VNET support

Runs locally or in the cloud
ode

RESTler Challenges/future work

* Better coverage “out of the box”
* Improve mining of valid values from examples
e Search for valid data payloads
* Infer more dynamic objects

* Support continuous testing scenarios
* CI/CD
* Regression fuzzing

* Work with community on new security checkers

* If you implement a new checker and would like to integrate or share your
results, talk to us on github!

Conclusion

* APlIs are everywhere: rapidly growing attack surface
e Stateful REST API fuzzing needed for deeper REST API coverage

* Thoroughly fuzzing services with a large or complex APl is a hard problem
e Automated tools like RESTler can help

* Please try RESTler and RAFT and give us your feedback!
e https://github.com/microsoft/restler-fuzzer
e https://github.com/microsoft/rest-api-fuzz-testing

https://github.com/microsoft/restler-fuzzer
https://github.com/microsoft/rest-api-fuzz-testing

Thank You!

Appendix

Fuzzing the API of real-world cloud service

e Authentication

* Pre-provisioning

* Dependencies between several APIs
* Naming constraints

* Resource creation patterns
* Async
* “Expensive”
e Rate limited

* Hidden dependencies (e.g. /api/A/start, ..., /api/A/stop)
* Many others

