
Stateful REST API Fuzzing
with RESTler

FuzzCon-Europe 2021

Marina Polishchuk
Microsoft Research

Joint work with: Patrice Godefroid, Vaggelis Atlidakis, Jamie Davis,
Richard Files, Bo-Yuan Huang, and Daniel Lehmann

Web APIs Everywhere

• Most cloud services programmatically accessed through REST APIs
• Many cloud backends are microservices with private APIs
• Services are rapidly evolving
• Need testing that keeps up with the pace of development and deployment
• How secure and reliable are the APIs?

Outline

• Why Stateful REST API fuzzing?
• Introducing RESTler
• Types of bugs RESTler can find
• CI/CD
• Future work

Why Stateful REST API fuzzing?
Research started in 2017
Motivated by Microsoft-internal user feedback on gaps in existing
solutions:

• Fuzzing each request in isolation
– low coverage – most requests depend on some pre-created resources
– human in the loop required to guide the fuzzer

• Traffic capture and replay with fuzzing
– coverage depends on how comprehensive the recorded traffic is

• Manually written fuzzers

Why Stateful REST API fuzzing?
Research started in 2017
Motivated by Microsoft-internal user feedback on gaps in existing
solutions:

• Fuzzing each request in isolation
– low coverage – most requests depend on some pre-created resources
– human in the loop required to guide the fuzzer

• Traffic capture and replay with fuzzing
– coverage depends on how comprehensive the recorded traffic is

• Manually written fuzzers

Too expensive to create and maintain for
large REST APIs (e.g. Azure services)

Important bugs missed

Example Bug

Service

ServiceRESTler

PUT /resources/CM/X {“val” : “12*3”, “region”: “US-West”}

RESTler

GET /resources/CM

200 OK {}

PUT /resources/CM/X {“val” : “123”, “region”: “US-Central”}

409 Conflict

500 Internal Server Error

[Checking Security Properties of Cloud Service REST APIs , V. Atlidakis, P. Godefroid, M. Polishchuk, ICST’2020]

Example Bug: Resource Leak

Service

ServiceRESTler

PUT /resources/CM/X {“val” : “12*3”, “region”: “US-West”}

RESTler

GET /resources/CM

200 OK {}

PUT /resources/CM/X {“val” : “123”, “region”: “US-Central”}

409 Conflict

500 Internal Server Error

Step 1: create a
new resource of
type CM with name
“X” in US-West
region with a
malformed body

Step 2: get a list of
all resources of
type CM

Step 3: create a
new resource of
type CM with name
“X”, but with a well-
formed body and in
a different region

X is now a zombie resource,
not counted against the user’s quota –

an attacker can keep creating them
**Resource leak and potential DoS! **

[Checking Security Properties of Cloud Service REST APIs , V. Atlidakis, P. Godefroid, M. Polishchuk, ICST’2020]

To find this bug, you
need:
1. invalid inputs
2. valid inputs
3. carefully crafted

dependent
requests

RESTler: a Stateful REST API Fuzzer

Stateful:
• Tests are sequences of requests

• A request is only fuzzed if its pre-requisite resources can be created
• Fuzzing algorithm avoids redundant testing

Automatic:
• Uses the Swagger/OpenAPI specification to generate fuzzing grammar

• Published for many REST APIs, used to generate client SDKs
• Good coverage out of the box for simple, well-documented APIs

Extensible:
• Pluggable active property checkers

Hundreds of bugs found across Microsoft services in the past 3 years
RESTler open sourced on github November 2020

How RESTler works

OpenAPI
Specification

RESTler
Grammar

Tests &
Bugs!

RESTler
Compiler

RESTler
Test Engine

v Infer how to fuzz each request type
v Generate code to parse responses
v Identify producer-consumer

dependencies

v Generate & execute tests
v Analyze test results: feedback loop

to learn from past service responses
v Systematic state-space search

Example

Sample OpenAPI spec
(five requests)

Grammar fragment
(one HTTP request)

RESTler
Compiler

Example

Grammar fragment
(one HTTP request)

A sample test
(one HTTP request)

RESTler
Test Engine

Example

Fuzzing session
(100s tests/min)

1. POST /blog/posts { “body”: “a” }
GET /blog/posts/1

2. POST /blog/posts { “body”: “b” }
DELETE /blog/posts/2

3. GET /blog/posts
POST /blog/posts { “body”: 123 }

…

Example

Fuzzing session
(100s tests/min)

115

120

125

130

135

140

145

150

1 2 3

Co
de

 co
ve

ra
ge

 (l
in

es
 co

ve
re

d)

Request sequence length

1. GET /blog/posts

2. POST /blog/posts

1. POST /blog/posts { “body”: “a” }
PUT /blog/posts/1 {“body”: “”}
DELETE /blog/posts/1

2. POST /blog/posts { “body”: “a” }
DELETE /blog/posts/2
GET /blog/posts

…

Sequence length 1

Sequence length 3
Sequence length 2

Outline

• Why Stateful REST API fuzzing?
• Introducing RESTler
• Types of bugs RESTler can find
• CI/CD
• Future work

Case Study: GitLab
• Open-source self-hosted Git service (millions

of users)

• Complex REST API: ~300 request types

• RESTler found 28 new bugs

All these bugs have been fixed!

(see the [reference] below for details)

[RESTler: Stateful REST API Fuzzing, ICSE’2019]

1. Create a project

2. Create a repo file with a proper commit

3. Delete the repo file with an empty commit message

à “500 Internal Server Error”

Example:

Case Study: Azure DNS

[Intelligent REST API Data Fuzzing, FSE’2020]

DNS service:
• 13/13 covered request types

• 4/13 with non-empty JSON-payload
• Schema size: 2, 22, 65, and 65

• Found 202 different error code/message
• Found new 500 internal server errors

• In 3 out of 4 request types
• The one with no bug found has 2 nodes
• 7 new bugs filed

• JSON payload fuzzing
• Fuzz both the schema and data values
• Dynamically augment set of possible

inputs using past responses

{
“location”: {
“type”: “string”

},
“tag”: {
“type”: “string”

},
“properties”: {
“id”: {
“type”: “string”,

},

“timeout”: {
“type”: “number”,

}
}

}

• object
• string
• number

{
“location”: “!@#$%^&”,
“tag”: “conference-talk”,
“properties”: {
“id”: “Microsoft”,
“timeout”: -1

}
}

Classes of bugs found by RESTler

• API specification
• Naming or type hierarchy inconsistencies (for dependencies) *
• Incorrect examples

• Input validation
• Unhandled exception (e.g. 500 instead of 400)

• Authentication
• Unauthenticated APIs *
• Able to access another user’s resources
• Crashing authentication -> inaccessible service *

• Resource management
• Resource exhaustion **
• Inability to create resource after error
• Create invalid resource (e.g. that can’t be referenced/deleted)

• Data leaks
• Leaking debug data types *

All these bugs are
being fixed!

* found during manual investigation
** found by service alerts

Careful when fuzzing in Production

When to do REST API fuzzing

• Developers
• During API development
• CI/CD regression fuzzing
• Deployment validation

• Security engineers
• Bug hunt for specific classes of bugs

Outline

• Why Stateful REST API fuzzing?
• Introducing RESTler
• Types of bugs RESTler can find
• CI/CD
• Future work

RESTler in CI/CD with RAFT

• RAFT is a self hosted REST API Fuzzing-As-A-Service platform
• Runs on Azure
• Supports several API fuzzing and scanning tools, easy to onboard new tools
• Allows deploying service at time of fuzzing, if packaged in docker container
• For more details, see https://github.com/microsoft/rest-api-fuzz-testing

https://github.com/microsoft/rest-api-fuzz-testing

CI/CD with RAFT

Push
code

Start
RAFT
job

Spin up containers
• Job-specified

tools
• Service Under

Test

Run tests

Report results

Bug Found!
Create
github issue

RAFT

• Scalable parallel testing
• Add support for new tools

without writing code
• Secret management
• VNET support
• Runs locally or in the cloud
• ode

RESTler Challenges/future work

• Better coverage “out of the box”
• Improve mining of valid values from examples
• Search for valid data payloads
• Infer more dynamic objects

• Support continuous testing scenarios
• CI/CD
• Regression fuzzing

• Work with community on new security checkers
• If you implement a new checker and would like to integrate or share your

results, talk to us on github!

Conclusion

• APIs are everywhere: rapidly growing attack surface

• Stateful REST API fuzzing needed for deeper REST API coverage

• Thoroughly fuzzing services with a large or complex API is a hard problem
• Automated tools like RESTler can help

• Please try RESTler and RAFT and give us your feedback!
• https://github.com/microsoft/restler-fuzzer
• https://github.com/microsoft/rest-api-fuzz-testing

https://github.com/microsoft/restler-fuzzer
https://github.com/microsoft/rest-api-fuzz-testing

Thank You!

Appendix

Fuzzing the API of real-world cloud service

• Authentication
• Pre-provisioning
• Dependencies between several APIs
• Naming constraints
• Resource creation patterns

• Async
• “Expensive”
• Rate limited

• Hidden dependencies (e.g. /api/A/start, …, /api/A/stop)
• Many others

