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Abstract: Abstract: Network theory has broad application in the
physical, natural, and social sciences. The study of complex net-
works, and their applications to the study of complex systems, have
focused predominantly on: (1) the elemental vertex-edge structure
(a.k.a., nodes and relationships), and subsequently (2) the dynamics
that occur as a result of this basic structure (e.g., diameter, distri-
bution, small world, contagion, etc). This network theory methodol-
ogy has provided powerful quantitative tools in the interdisciplinary
study of complex systems, and has enriched our thinking about
them. However, the simplifying assumptions of the network theory
framework have also informed the field of systems thinking, some-
times to its detriment. Network-thinking tends to shoe-horn a num-
ber of important elemental structures of complex systems into node-
edge relational structure. By assigning these elemental structures to
edges, both elemental and emergent complexity can be lost. This pa-
per articulates how DSRP Theory can enrich network thinking about
complex systems by: (1) identifying the elemental structures that
are typically hidden in network models, (2) quantifying their nature
and abundance, and (3) explicating their potential contribution to
the intrinsic function and emergent complexity of systems. Specif-
ically, we detail several DSRP heuristics for determining how many
elements potentially exist in any network model, demonstrating the
effectiveness of DSRP as a “universal cognitive grammar” for identi-
fying and analyzing the structural potentials in complex systems.
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1. Systems Thinking and Network Thinking9

It is well established that Systems Thinking (ST) is a complex10

and adaptive phenomena borne of a universal set of simple11

rules(1, 2). Networks are a powerful visualization tool for12

analyzing and understanding systems. In that sense, network13

thinking and systems thinking are synonymous because the14

terms networks and systems are both abstract and general 15

terms used to describe any phenomena with two or more 16

related elements. 17

2. The Bridges of Konigsberg 18

Leonid Euler (1735) famously solved the Konigsberg Bridges 19

problem and in the process invented network theory (also 20

known as graph theory). Since then, networks have provided 21

a simple, abstract representation of both simple and complex 22

systems (3, 4) and proven to be an invaluable interdisciplinary 23

tool that is ubiquitously used in every discipline and in every 24

sector. The Konigsberg Bridges problem was to determine 25

whether a person could walk through the city and cross each 26

bridge once and only once (5). Euler’s great insight was the 27

use of abstraction, to reduce the four land-masses to nodes 28

(vertices) and the relationships (edges) (See Figure 1). 29

Fig. 1. The Konigsberg Bridges that inspired Network Theory

Thus, Euler showed us that networks were based on two 30

elemental structures: the vertex and the edge, which are also 31

commonly referred to as nodes and links, or nodes and re- 32

lationships (See Figure 2). This simple, elemental structure 33

has proven invaluable for discovering and understanding all 34

kinds of larger-scale behavior of networks (e.g., diameter, dis- 35

tribution, connection patterns, small world effects, emergence, 36

robustness, adaptivity, contagion, etc.) 37

Fig. 2. Elements of Network Theory
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There are however, numerous other elemental structures38

that exist in networks. These structures are explicated by39

DSRP Theory. DSRP Theory provides a number of impor-40

tant variables that are universal to systems abstractly, and41

specifically to networked phenomena. Like Network Theory,42

DSRP has a very basic structure. And, like Network Theory,43

the simplicity of this structure belies its potential complexity.44

The DSRP structure is given in Table 1.

Table 1. Basic Structures

Patterns Elements
Distinctions (D) identity (i) ↔ other (o)
Systems (S) part (p) ↔ whole (w)
Relationships (R) action (a) ↔ reaction (r)
Perspectives (P ) point (ρ) ↔ view (v)

45

DSRP Theory states that elemental pairs exist that make46

up each of the four simple rules of cognition: making Distinc-47

tions (i,o), organizing ideas into Systems (p,w), recognizing48

Relationships (a,r), and taking Perspectives (ρ,v). It can be49

expressed as a complex adaptive system or CAS, in which the50

agents are informational variables and the simple rules are51

DSRP patterns and their co-implying elemental base-pairs. In52

this way, DSRP is to the formation and evolution of cognition53

as ATCG is to the formation and evolution of biology (life).54

Systems thinking is described as a continuous and recursive55

feedback loop borne of DSRP processing of information, as56

seen in Figure 3.57

Fig. 3. The ST Loop

This recursive loop is described by a simplified equation58

explicated in Table 2.59

Table 2. The equation of Mental Models (M = I⊗ T)

Mental Model (M) = Information (I) Thinking (T)
A mental model is
synonymous with
knowledge, mean-
ing, construct,
model, schema,
idea, concept,
etc.

Information is
synonymous
with symbolic
variables, con-
tent, data, labels,
words, language,
materials, etc.
And, can also be
understood as
the fundamental
function of the
material world
(e.g., to transport
information)

Thinking refers
to both noun-like
structures (a
thought) and verb-
like processes (a
thinking process).
It is synonymous
with encoding,
organizing, or
structuring con-
tent in order to
give

And further explained in the following equation which is60

explicated in Figure 4.61

Mn = ⊕
I
⊗
j≤n

T
{

: Di
o ◦ Spw ◦Rar ◦ P ρv :

}
j

Fig. 4. Expanded Explanation of Equation

Table 3 summarizes some of the main differences between 62

the basic structures of network theory and that of DSRP. At 63

its core however, DSRP is an extension of network theory. 64

Table 3. Net Difference Basic Structures

Network Theory DSRP Theory

1. nodes defined

2. edges defined as connec-
tions between nodes

1. nodes defined (called identi-
ties) (no difference)

2. other (nodes) co-define
identities

3. edges defined (called Rela-
tionships) (no difference)

4. defines action-reaction
structure of Relationships

5. any edge can become a
node

6. any node can be a whole
(contain parts) or a part (can
belong to another node);
this includes edge-nodes

7. any node can be the point or
the view of a Perspective

The additional structures in DSRP Theory have many 65

uses, but the predominant use is to make structural predic- 66

tions. DSRP rules help us to make predictions about the 67

structure our mental models or reality is capable of taking. 68

This awareness of potential structure, allows us to identify 69

gaps in our knowledge and identify where new knowledge 70

could be discovered or created. For example, if you were 71

a detective in a real-life game of CLUE and I tell you that 72

there were 6 people at the party where the murder took place, 73

it would be quite easy to count the number of relationships 74

(or possible interactions) that are structurally possible (us- 75

ing the expression n(n − 1)) simply based on n equalling 6: 76

n(n − 1) = 6(6 − 1) = 6(5) = 30. So, there are 30 possible 77

relationships among the party-goers. This of course does not 78

tell you anything about the reality of interconnections. It 79

may be true that Professor Plum and Miss Scarlet never had 80
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a conversation, but as a detective, it is your job to predict81

that they structurally could have and discover whether this82

relationship should be drawn or not drawn. In order to make83

structural predictions, it is often useful to develop an aware-84

ness of the counts associated with such structures. A heuristic85

for doing so aides this task. Heuristics are used to ascertain86

the maximum degrees of freedom or potential complexity of a87

system or network.88

3. Relating Nodes (R)89

What defines an edge? In network theory an edge is defined90

by the nodes it links. Thus, in the Konigsberg example in91

Figure 1, one of the edges might be defined as AB. In Figure 592

you can see that the "Relationship Rule" or "R-Rule" makes it93

explicit that any node can (or cannot) be related to any other94

node. This includes (as we will later learn in the "S-Rule")95

nodes that are sub-parts of other nodes and it also utilizes the96

is/not structure—as we will later learn in the "D-Rule"—that97

a node is and/or is-not related to another node. This, too,98

is important, as both the structure and dynamics of systems99

(networks) are highly dependent on both what is and what is100

not related.101

Fig. 5. Relationships in Networks

Calculating the number of relationships of a given network102

can not only make structural predictions about maximum103

number of possible relationships (R-Rule) but also the max-104

imum number of possible relationships that should or could105

be distinguished (D-Rule). In Figure 6, for example, all of the106

nodes that exist could be related, but only 8 relationships exist107

(or 16 if one counts each as a two-way relationship). Using108

the basic heuristic n(n − 1) we can see that for n = 9 (the109

original "root" set of nodes) the number of possible relation-110

ships among them is n(n − 1) = 9(9 − 1) = 9(8) = 72. Yet,111

in Figure 6 only 8 relationships have been identified as being112

salient. So while there are 72 possible relationships and 36113

possible relational-distinctions ("RDs" or edges with nodes on114

them), there are only 8 identified (or 16 if one counts each as115

a two-way relationship) and there are therefore 56 potential116

two-way relationships where a structural prediction can be117

made. By structural prediction we mean that one might say,118

"these are all the structural possibilities, but which one’s are119

salient to our particular analysis?" In other words, additional120

unseen Relationships exist that can be predictably identified.121

A simple counting of the elements in the Konigsberg net-122

work example (Table ??) shows the four nodes (A,B,C, and123

D) and the 7 edges illustrated in b Figure 1 in the first two124

columns.125

Fig. 6. Relationship-Distinctions (RD) in Networks

Table 4. Various Ways to Count Rs between n identities

Nodes Simple R 2-way 2-way R+ self Complex Ra
r s

n = 4 n(n−1)/2 n(n− 1) n2 2(n2)

A AB AB AA
−→
Aa ←−

Ar

B AC AC AB
−→
Aa ←−

Br

C AD AD AC
−→
Aa ←−

Cr

D BC BA AD
−→
Aa ←−

Dr

BD BC BB
−→
Ba ←−

Br

CD BD BA
−→
Ba ←−

Ar

CA BC
−→
Ba ←−

Cr

CB BD
−→
Ba ←−

Dr

CD CC
−→
Ca ←−

Cr

DA CA
−→
Ca ←−

Ar

DB CB
−→
Ca ←−

Br

DC CD
−→
Ca ←−

Dr

DD
−→
Da ←−

Dr

DA
−→
Da ←−

Ar

DB
−→
Da ←−

Br

DC
−→
Da ←−

Cr

4 6 12 16 32

This is how the actual bridges in Konigsberg were 126

(i.e.,where AB = BA). So, the total possible bridges (or 127

edges/relationships) we could have for this network of 4 nodes 128

could be quickly counted using the formula n(n − 1)/2 = 129

4(4− 1)/2 = 4(3)/2 = 6. This formula works reasonably well 130

to count the basic number of connections between n nodes 131

but it treats AB = BA. In other words, it treats a drive from 132

New Jersey to New York as the same as a drive from New 133

York to New Jersey. 134

Using the base formula (n(n− 1)) we can see that it works 135

based on the idea that in any network of n nodes, the number 136

of nodes that each node can connect to is one less than the 137

total number of nodes. Ergo, when the number of nodes is 4 138

as in the Konigsberg example (n = 4), each node can relate to 139

n(n−1) nodes, or 4(4−1) or 4(3). The n(n−1) formula counts 140

AB and BA as not equal (AB 6= BA). The third column in 141

Table 4 shows all of the relationships using this formula equal 142

to 12. 143

But, if the desire is to identify all of the degrees of freedom 144

in a network of n nodes, then we have left out the node’s 145
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ability to relate to itself. This self-relationship, in some sys-146

tems (particularly psychological or sociological networks), is147

critically important. For example, we know that bias plays a148

significant role in individual behavior. Bias, in turn, can be149

mitigated by metacognition (awareness of one’s tendency to-150

ward certain faulty mental models). Metacognition, awareness,151

bias recognition, etc. are all self-relationships that can effect152

the behavior of the node and therefore effect the emergent153

behavior of the network itself. Thus, for a network where154

n = 4, the fourth column of Table 4 illustrates that there are155

16 possible unique relationships (including self-relationships)156

which is further shown in the network images in Table 5.157

Table 5. n2 counts for n= 2, 3, and 4

A B

1

2

3

4 A B

C

1

2

3

4

5

6

7

8
9

A B

C D

1

2

3
4

5

6

7
8

9

10
11

12

13

14
15

16

n = 2, edges = 4 n = 3, edges = 9 n = 4, edges = 16

Thus—when including self-relations—the formula to iden-158

tify the total degrees of freedom in terms of Relationships for n159

nodes is not n(n−1)/2, nor n(n−1), but n2. The Relationship160

Rule or "R-rule" in DSRP Theory states that relationships are161

universally structured as co-implying elements: action (a) and162

reaction (r). Therefore, if one wants to account for the action163

and reaction variables of all possible Relationships between164

n nodes, including self-relations, the equation must be 2n2,165

where each directional relationship is not merely a single vari-166

able but two: the action of A on B and the reaction of B for167

the relationship AB and vice versa for BA. Thus, when we168

want to calculate the maximum degrees of freedom regarding169

Relationships in a network of n we use the formula 2n2 as seen170

in column 5 of Table 4. Thus, the formula 2n2 provides the171

maximum number of Rs (or degrees of freedom) in any given172

network of size n and column 5 lists all the specific relational173

variables for the ABCD network (i.e., 32).174

In addition to the counting of relational degrees of freedom,175

R-Rule can be mixed with D-Rule such that every one of the176

2n2-relationships can become a new node, thus increasing the177

original "root" n of the network.178

Heuristic to Determine Potential Complexity of R179

The potential complexity of R at an arbitrary root stage is180

defined as the maximum number of actions and reactions that181

can be formed from n root identities, without compounding182

with D, S, or P. The first count does not include “self-relations,”183

which are only sometimes useful in conceptual models. The184

correction to the results when self-relations are also included.185

When “self-relations” are not counted, the case of one root186

identity is trivial and has zero degrees of freedom. For the case187

of two root identities {1 2}, each can be regarded as either an 188

action or reaction of a relationship 1 ↔ 2 (i.e. 1 a r−−→ 2 and 189

1 r a←−− 2). These possible relationships can be enumerated by 190

pairing them with the orderings or permutations of the two 191

elements, i.e. 1 a r−−→ 2 ∼= 1 → 2, and 1 r a←−− 2 ∼= 2 → 1. 192

In other words, there are two elements for each R, and each 193

R is one of the two possible orderings of {1 2}, which gives 194

2× 2 = 4 degrees of freedom. Notice that “self-relations” such 195

as 1→ 1 are not included. 196

Since R is fundamentally bivalent, any arbitrarily com- 197

plicated relationship among three or more identities can be 198

viewed as the composition of relationships between pairs of 199

identities. So partitioning the R-counting in terms of permu- 200

tations of couples as above extends to any number of root 201

identities. For example, in the case of three root identities {1 202

2 3}, we have the following R’s: 203

1→ 2 1→ 3 2→ 3
2→ 1 3→ 1 3→ 2 204

which are counted by the number of permutations of two 205

objects drawn from a set of three objects, given by 3!
(3− 2)! . 206

Further, each of these R’s contains two degrees of freedom, one 207

a and one r. So the total number of a’s and r’s is 2× 3!
(3− 2)! = 208

12. 209

It should be clear now that for n ≥ 2 root identities, the 210

maximal number of a’s and r’s is twice the number of permu- 211

tations of two objects drawn from a set of n objects 212

#a+ #r = 2× n!
(n− 2)! = 2n (n− 1)

Note that we have not counted relationships between sub- 213

groupings such as 1 ↔ {2 3}, since the description of such 214

relationships necessarily refers to compound DSRP structure. 215

For example, within the root identity set {1 2 3}, the relation- 216

ship 1→ {2 3} first constructs {2 3} as a whole and regards it 217

as an identity before relating {1} to it, which is a composition 218

of R with S and D. 219

To correct these formulae for the inclusion of “self-relations” 220

such as 1 → 1, one additional action and one additional 221

reaction is added for each possible self-relationship. This 222

gives an additional 2n elements, bringing the total potential 223

complexity to 2n2. Note that for the trivial case of one root 224

identity, this count gives two degrees of freedom, corresponding 225

to the one action and one reaction of the self-relationship. 226

4. Systematizing Nodes (S) 227

The ways nodes are defined and related matters, but so too 228

does the way they are grouped. In DSRP Theory, we call this 229

systematizing and the Systems Rule or "S-Rule" provides that 230

systems are universally structured as co-implying elements: 231

part (p) and reaction (w). This means that any of the n nodes 232

in a network has the potential to be a part of a grouping (or 233

several groupings) and also has the potential to be its own 234

grouping (a whole) to which parts belong. In Figure 7 we 235

revisit our emerging network of nodes to illustrate how each of 236

the nodes (both the original 9 "root" nodes and the 7 of the 8 237

subsequent relational-nodes) can be further broken down into 238
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part-whole systems with equal or greater complexity to the239

hierarchical level up. Note that the we’ve selected an arbitrary240

number of parts for each whole of 3, but this number could241

be any number. Also note that the one relationship where we242

chose not to identify as an "RD" or relational-node, cannot243

be broken into parts (i.e., systematized) because there is no244

node on which to operate. But here again, the structural245

prediction can be made to let us know that there is cognitive246

and real-world possibility lurking there, that may or may not247

be salient and that may or may not be acted upon.248

Fig. 7. Part-Whole Systems in Networks

In order to determine the maximum degrees of freedom in249

a network we will also want to be able to count the number of250

ways n nodes can be organized into groups. This is given by251

the formula, 2n − 1. Simply put, this formula takes n nodes252

and does the following in Figure 8:253

Fig. 8. S-Rule 2n − 1

First, it takes groups of 1 for n. So if n = 10 then there can254

be 10 groups made up of 1 node each. Next, it takes groups of255

2 for n. Next, it takes groups of 3 for n. Next, it takes groups256

of n for n, and so on.257

In addition to groupings of n nodes, DSRP’s S-Rule pro-258

vides for deconstructing any node into any number of parts,259

adding infinite dimensionality to the network. The number260

of parts (new nodes) that can be added to any existing node261

is effectively infinite, but in practical terms it is usually a262

number between 1 and 100. Thus, we can add the number of263

parts-added-per-node (np) to the original n.264

Heuristic to Determine Potential Complexity of S 265

The potential complexity of S at an arbitrary root stage is 266

defined as the maximal total number of parts and wholes that 267

can be formed given n identities which define the root system. 268

As a simple example, consider the root system consisting 269

of two identities {1 2}. It has parts {1} and {2}, and wholes 270

{1}, {2}, and {1 2}. This gives a potential complexity of 271

2 + 3 = 5 degrees of freedom. In principle one can also regard 272

{1 2} as part of itself. In some conceptual models, this “self- 273

part” structure may be useful to consider. So in this case, 274

the counting would yield a potential complexity of 3 + 3 = 6 275

degrees of freedom. However in many conceptual models, 276

the “self-part” structure is not meaningful. Thus, the general 277

potential counting does not include the “self-part” structure, 278

but comment on the result when it is included is also offered. 279

DSRP describes how the identities denoted {1} and {2} 280

can be broken further into part-wholes, ad infinitum. However, 281

the next stage of part-whole structure requires the existence 282

of new identities contained in {1} and {2}. This addition of 283

identities can be accounted for as a subcase of the root stage 284

with the appropriate number of identities. It is both consistent 285

and convenient to partition the counting of part-whole degrees 286

of freedom in terms of a fixed number of root identities. 287

To obtain the formula for the potential complexity of S as 288

a function of the number of root identities, the counting of 289

part-wholes is organized in the following: 290

{1 2} p w

{1 2}: {1}, {2} {1}, {2}

{1 2}

291

#p: 1× 2 #w: 3 292

The number of parts by the subsystem of which they are 293

to be regarded as a part. For example, the next largest root 294

system has the following: 295

{1 2 3} p w

{1 2 3}: {1}, {2}, {3}, {1}, {2}, {3}

{1 2}, {1 3}, {2 3} {1 2}, {1 3}, {2 3}

{1 2 3}

{1 2}: {1}, {2}

× 3

296

#p: 1× 6 + 3× 2 #w: 7 297

Note for example that regarding {1} as a part of {1 2} is 298

distinct from regarding {1} as a part of {1 2 3}, and should 299

be counted separately. However in this example, regarding 300

{3} as a part of {1 2 3} is the same, regardless of whether its 301

complementary parts are regarded as {1 2} or as {1} and {2}. 302

So these two possibilities should not be counted as distinct 303

in the basic part-count. Distinguishing them is a compound 304

DSRP operation, such as describing the R or P structure of 305

the S. The next largest root system is as follows: 306
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{1 2 3 4} p w

{1 2 3 4}: {1}, {2}, {3}, {4} {1}, {2}, {3}, {4}

{1 2}, {1 3}, {1 4},
{2 3}, {2 4}, {3 4}

{1 2}, {1 3}, {1 4},
{2 3}, {2 4}, {3 4}

{1 2 3}, {1 2 4}, {1
3 4}, {2 3 4}

{1 2 3}, {1 2 4}, {1
3 4}, {2 3 4}

{1 2 3}: {1}, {2}, {3} {1 2 3 4}

{1 2}, {1 3}, {2 3}

× 4

{1 2} {1}, {2}

× 6

307

#p: 1× 14 + 4× 6 + 6× 2 #w: 15308

Since each identity is apparently a part of several subgroup-309

ings as well as the root system, it is helpful to partition the310

part-count by subgroupings. It should be clear from the ta-311

bles that the subgroupings partition the part-count binomially.312

More explicitly, the general formula for the number of parts313

of a system at step n ≥ 2 is schematically:314

#p =
n∑

j=2

(#subgroupings of size j) x (#subgroupings of subgroupings of size j) - 1

=
∑n

j=2

(
n
j

)(
2j − 2

)
315

and the number of wholes at step n ≥ 2 is just the number316

of possible subgroupings of the root:317

#w = #subgroupings

= 2n − 1.

So the total potential complexity of S is the sum of the318

total maximal number of parts and wholes∗:319

∣∣Spw∣∣ = #w + #p

=
(
2n − 1

)
+

n∑
j=2

(
n

j

)(
2j − 2

)

=
(∣∣P({Spw}r)∣∣− 1

)
+

n∑
j=2

(
n

j

)(∣∣P({Spw}j)∣∣− 2
)

∗To adjust these formulae for situations in which one wishes to include the “self-part” structure,
one more part for each class of subgroupings, corresponding to the “self-part” for each subgroup
is included. Because all wholes are by definition a part that make up 100% of the whole, it is
sometimes important to account for self-as-part. For example, for the {123} root system, {123}
as the self-part at the {123} substage, and {12}, {13}, {23} as the self-parts at the other
substage must be included. This gives an additional 1 + 1∗3 = 4 parts. In general, at root stage

n, there is one additional part for each subgrouping, which is an additional
∑n

j=2

(
n
j

)
parts

whereby {Spw}r is the root system regarded as a set in 320

traditional set theory, and P
(
{Spw}r

)
I is its power set, or set 321

of subsets. P
(
{Spw}j

)
is therefore the power set of some subset 322

of size j. Note that for any set of size j, its power set is of 323

size 2j . For example, in traditional set theory, the set {1, 2} 324

has power set 325

P
(
{1, 2}

)
= {∅, {1}, {2}, {1, 2}}

with size
∣∣P({1, 2})∣∣ = 22 = 4, since the power set contains 326

both the empty set ∅ and the whole set {1, 2} as elements. The 327

inclusion of the empty set is required for logical consistency 328

in the standard formulation of set theory. 329

5. Nodes as Perspectives (P) 330

In DSRP Theory, any node can also be a point-of-view. The 331

Perspectives Rule or "P-Rule" provides that perspectives are 332

universally structured as co-implying elements: point (ρ) and 333

view (v). This means that (as shown in Figure 9) any of the 334

n nodes in a network has the potential to be a point (the 335

vantage point from which looking/framing occurs) or a view 336

or part of a view (that which is being framed or observed). 337

Fig. 9. Point-View Perspectives in the Network

The formula for calculating the degrees of freedom for point- 338

view perspectives in n2 because for every n there exists a point 339

and for every point there exists a view. The view can of course 340

be an individual node, a system of nodes, a system of nodes 341

and relationships, etc. 342

W
H

I
R

D

C1
C2

Fig. 10. Perspective graphs
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From our discussion thus far we get that the degrees of343

freedom F in any network is:344

F =
∑

n+ np = n2 + 2(n2) + (2n − 1) + n2

Heuristic to Determine Potential Complexity of P345

The potential complexity of P at an arbitrary root stage is346

defined as the maximum number of points p and views v that347

can be formed from n root identities, without compounding348

with D, S, or P. The P-counting is identical to the R-counting349

performed above. Again, the first count does not include350

“self-perspectives,” and the formulae are adjusted later.351

Each root identity forms the point of a perspective and the352

view of another perspective. When “self-perspectives” are not353

included, the case of one root identity is again trivial, and354

has zero degrees of freedom. In the case of two root identities355

for example, {1 2}, the possible perspectives are 1 p v−−→ 2 and356

1 v p←−− 2. As with the R-counting, these perspectives can be357

enumerated by the orderings of the identities: 1 p v−−→ 2 ∼= 1l2,358

and 1 v p←−− 2 ∼= 2l 1. In the case of three root identities {1 2359

3}, the possible perspectives are360

1 l 2 1 l 3 2 l 3

2 l 1 3 l 1 3 l 2
361

And as with the R-counting, each of these P’s contains two362

degrees of freedom, one for each element. So for n ≥ 2, the363

maximal number of p’s and v’s is364

#p+ #v = 2× n!
(n− 2)! = 2n (n− 1)

Once again, perspectives on subgroupings such as 1l {2 3}365

are not counted, since the description of such perspectives366

refers to compound DSRP structure, such as the composition367

of S and D with P. As with the R count, to correct these368

formulae for the inclusion of “self-perspectives” such as 1 l 1,369

one additional point and one additional view for each possible370

self-perspective must be added. This gives an additional 2n371

elements, bringing the total potential complexity to 2n2. Note372

that for the trivial case of one root identity, this count gives373

two degrees of freedom, corresponding to the one point and374

one view of the self-perspective.375

1 l 2 1 l 3 2 l 3

2 l 1 3 l 1 3 l 2
376

For simplicity sake we can use a basic heuristic that for377

any system of n things, there are a possible n points seeing378

n2 views, which we can express as nl n2. Thus for a system379

where n is equal to 2, 3, or 4 respectively, the table below with380

nodes A,B,C,D illustrates the heuristic for Perspective:381

382

n Perspective Combinations Heuristic

2 AlA AlB nl n2 =
2l(2∗2) = 2l4
(i.e., 2 points see 4 views)B lB B lA

3 AlA AlB Al C
nl n2 = 3 l
(3 ∗ 3) = 3 l 9(i.e.,
3 points see 9 views)

B lB B lA B l C

C l C C lA C lB

4 AlA AlB Al C AlD

nl n2 = 4 l
(4 ∗ 4) = 4 l 16
(i.e., 4 points see 16 views)

B lB B lA B l C B lD

C l C C lA C lB C lD

DlD DlA DlB Dl C

383

6. Distinguishing Nodes (D) 384

Now that we have defined the S, R, and P Rules, we can 385

better answer the seemingly simply, but surprisingly complex, 386

question, what defines a node? In network theory, an abstract 387

thing called a "node" is defined by assigning it an "Id" or 388

"identity" (i.e., a letter, number, symbol, or data, etc.). Thus, 389

the way a node is distinguished, and subsequently defined, is 390

given by its identity. Let’s say for example that the node is 391

labelled "A." We therefore can call that node "A" and say that 392

its identity is "A" or alternatively, the "node A." Let’s say the 393

node’s identity is "Sally": 394

Table 6. Distinguishing a Node

How Network Theory Defines Node How DSRP Defines Node

Sally Bob

is

Sally Bob
is not

is

In actuality, "Sally" is merely the label for the node and 395

its identity is far more complex. The identity of any given 396

node is established by a complex formula of not only what it 397

is, but also all of the things in its universe that it is not. This 398

is sometimes thought of as qualitative and "contextual" but it 399

is quantifiable. The Distinction Rule of DSRP (or "D-Rule") 400

states that Distinctions (D) are universally structured as co- 401

implying elements: identity (i) and other (o). This means that 402

in a network comprised of nodes A, B, C, and D, as in the 403

Konigsberg example, the identity of A is not merely A alone. 404

The identity of A also includes the following (left column of 405

Table 7): 406

Table 7. The identity of A

A = A A is A

A = ¬B A is not-B

A = ¬C A is not-C

A = ¬D A is not-D

A = ¬(BCD) A is not-(BCD)
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The left column in Table 7 are notations that are explicated407

in the column on the right. The right column in Table 7 can408

be read as existential statements of the identity of A. By409

existential, we mean that something is (from the verb "to be").410

Note that all of the statements about A are is-statements;411

whether they refer to characteristics that A is or those that412

A is not. Thus identity of A is a listing of all the things A is,413

which includes what it is, not. In other words, these are all414

the things that A is and A is not—the things about A and the415

other things that help to collectively form A’s identity (See416

Figure 11 for the visual version of this idea).417

Fig. 11. Identity-Other Distinctions in Networks

Earlier, in Table 7, the definition of A not only accounts for418

what A is but also what A is not. Due to our discussion thus419

far about the potential complexity of not only D, but also S,420

R, and P, it becomes clear that the variables associated with421

identity and other for any given identity are not two-fold but422

many-fold and are therefore more numerous. Let us look at a423

system of 4 interrelated nodes from two different perspectives,424

that of Node A and Node B noting the single difference in425

their perspectives being the relationship between A and C:426

Table 8. 2 Perspectival Networks

A B

C D

1

2

3

5

6

A B

C D

2

3
4

5

6

Network from A’s perspective Network from B’s perspective

Where A recognizes that a relationship exists between A427

(itself) and C, B does not recognize this relationship. Hypo-428

thetically, if this was all the information we had about this429

network then we could only conclude that A is both related430

to and not related to C depending on which perspective is to431

be believed. This is not as abstract as it sounds, consider, for432

example the recent reports about a virus (COVID-19) whose433

identity continues to be an enigma to us; a recent research434

report shows that it is asymptomatically contagious while435

another research report shows that it is not. Is COVID-19436

asymptomatically contagious? It depends who you ask. If you437

take the total information available, then the answer is yes 438

and no (or maybe or we don’t know). In the past twenty years 439

Pluto has changed from being a planet to not being a planet 440

to once again being a planet. Is Pluto a planet? It depends 441

who you ask. If you take the total information available, then 442

the answer is yes and no (or maybe or we don’t know). The 443

deeper meaning is that even something as simple as defining 444

A is probabilistic in nature. In other words, the definition of 445

A is a probability cloud of its DSRP. 446

Note again the existential nature of the term is (from the 447

verb to be). In order to define any node A, we must define 448

what it is. We must therefore define what is sometimes call, 449

vaguely, the "context" of A. But this context is quantifiable 450

and important, as it not only influences A and vice versa, it 451

also defines A. What we have been describing thus far is the 452

universal structures that elucidate and quantify this "context." 453

Table 9 builds on the perspectival networks in Table 8 to 454

further define A. Not how different Table 7) is from Table 9. 455

Table 9. A is all of these things...

A is A

A is related to B

A is related to C (according to A)

A is related to D

A is part of(ABCD)

A is comprised of [unknown] parts

A is a relationship between B and C (according to A)

A is not-B

A is not-C

A is not-D

A is not-(BCD)

A is not related to C (according to B)

A is not a relationship between B and C (according to B)

What Table 9 illustrates is that the existential nature of A 456

(i.e., its identity) is defined not merely by what it is and what 457

it is not as described in Table 7, but also by what it is and 458

is not related to, what it is and is not part of or a whole for, 459

and all of these conditions according to various perspectives. 460

In other words, the very identity of any node, is a part-whole 461

system of "definitions" distinguishing all the things that it is 462

and also all the things it is not. 463

Heuristic to Determine Potential Complexity of D 464

Utilizing the D-Rule, we can count the number of other (o) 465

variables as a single set or part-whole system we can use the 466

formula 2n in any network of n nodes. This is because for 467

every node (i.e., for every identity (i) variable) there is an 468

other (o) variable. But, we will see that both the identity and 469

other variables are not a single thing, but a collection of things 470

(a.k.a., a part-whole system). 471
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7. Conclusion472

Summarizing these heuristics† for D, S, R, and P we find that473

the following can be used in most cases:474

• Distinctions can be quickly calculated using the formula475

2n476

• Systems can be quickly calculated using the formula 2n−1477

• Relationships can be quickly calculated using the formula478

n(n − 1)/2 for single Relations; n(n− 1) for two-way479

Relations; n2 for single relations included self-relations,480

and; 2n2 for action-reaction variables on two-way relations481

including self-relations.482

• Perspectives can be quickly calculated using nln2, where483

there are n points seeing n2 views.484

Network Theory offers significant insight into the structural485

properties of complex adaptive systems that allow us to see486

the full potential of the complexity of both the real world and487

one’s thoughts about it. DSRP Theory provides a universal488

cognitive grammar (UCG) and numerous derivative heuristics489

that help count the maximum possibilities in the structure of490

any network—providing a short cut and maximum efficiency491

in understanding complex networks, including human thought.492

This universal cognitive grammar and these heuristics also493

provide the basis for making structural predictions about what494

might be, what is not yet known, or what has yet to be495

discovered.496

†The counting of the maximal number of elements for D, S, R, and P in terms of n root identities
serves as a heuristic measure for the potential DSRP complexity of a given mental model. However,
this type of counting may not represent a meaningful measure of the “useful” complexity of a given
mental model, or the likely complexity of a typical mental model. More specifically, this counting
of degrees of freedom in terms of indivisible root identities introduces an inherent bias into the
counting procedure, which destroys some of the symmetry of DSRP. Given the importance of
the elementary process of splitting a “primitive” identity into further parts, and the automatic and
essential character of other compound DSRP operations, it seems that this method of quantifying
DSRP does not provide the most natural way of thinking about DSRP dynamics, even if it may be
used to correctly enumerate the total number of possible elements. Some more detailed comments
about these caveats are in order. 1. Counting in terms of the number of “root identities” introduces
“identity bias” in the framing of the complexity count. In some situations, it may be advantageous
to perform other counts. For example, a DSRP user may be interested in counting the maximal
number of part-wholes as a function of R’s manifested in a given mental model, instead of counting
in terms of i’s. 2. Treating root identities as indivisible introduces an additional bias into the
count. It is a natural consequence of S that any whole may in principle be decomposed into parts.
However the counting above regards the root identities as primitive and indivisible. It accounts
for the additional degrees of freedom that describe root identity part structure by partitioning them
within the root stage that has the correct total number of identities. This form of identity bias occurs
because we are counting elements as a function of identities. One of its consequences is that
certain natural DSRP co-implications, such as the co-existence of parts and their identities, are
not manifest in the counting protocol at each root stage. 3. This identity bias also influences
other natural co-implications and compound DSRP operations. For example, in the S-count for {1
2 3}, we were compelled to allow wholes such as {1 2}. However by pattern co-implication, it is
automatic that such a whole has an identity for example, and therefore the total number of identities
present is increased. But these new identities are ignored by the count: it counts only parts and
wholes as a function of the primitive identities. It regards these new identities as a compound
DSRP operation, in particular a composition of D with S, to be accounted for at a later stage with
more identities. Moreover, such compound operations could continue ad infinitum: the subsystem
{1 2} is automatically related to {3}, and has a perspective on {1 2 3}, etc. So this truncation
of the most basic co-implications, in order to organize the count by root identities, biases the
complexity measure in ways that are unnatural for some applications, even though these degrees
of freedom can be accounted for step-by-step by adding more root identities. 4. Finally, given the
compounding nature of DSRP described in 3, the maximal complexity of a possible mental model
is perhaps unbounded. However the “useful” complexity of a mental model is clearly bounded by
both the saliency of the degrees of freedom and the cognitive tendencies of a typical thinker to
suitably coarse-grain. In relation to the counting procedure given above, it should be clear that
simply adding the maximal number of elements of each pattern in terms of n root identities will
yield a very restricted notion of maximal complexity. As stated, the counting procedure is identity-
biased and ignores all co-implications and compound operations. This complexity measure is then
better described as “the maximal number of elementary degrees of freedom in the minimal identity
representation of a mental model, as a function of number of elementary identities."
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