

Type analysis

Single figures are nominal except where noted.

Iron	Balance	Silicon	2.50 %	Manganese	0.40 %
Phosphorus	0.120 %	Carbon	0.03 %		

Forms manufactured

Bar-Rounds	Bar
Billet	Many forms and conditions (Note: cold drawn bar available in diameters 1/2 in [12.7 mm] or less)
Strip	

Description

Silicon Core Iron B-FM is melted in electric arc furnaces to exacting chemical specifications and carefully controlled through all manufacturing processes to produce a finegrain, uniform quality magnetic core iron.

This alloy exhibits improved machining characteristics over Silicon Core Iron B. Improvements in machinability of up to 40% have been realized on automatic screw machines.

In addition, Silicon Core Iron B-FM displays lower residual magnetism, higher electrical resistivity, and is more magnetically soft when heat treated under identical conditions than Silicon Core Iron B.

The magnetic characteristics and cold working/cold forming properties of Silicon Core Iron B-FM are in the same range as Silicon Core Iron B.

Key Properties:

- Lower residual magnetism
- · Higher electrical resistivity
- Improved machinability
- · Superior magnetic core component

Markets:

- Aerospace
- Consumer
- Automotive
- Industrial

Applications:

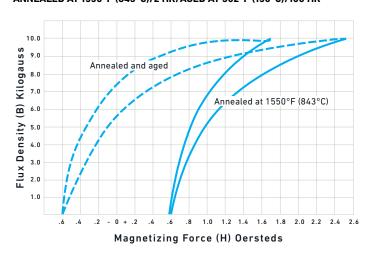
- Solenoid switches
- Cores

Relays

- Pole pieces
- Armatures

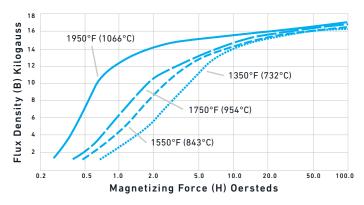
Physical properties

PROPERTY	At or From	English Units	Metric Units
SPECIFIC GRAVITY	_	7.69	7.69
DENSITY	_	0.2760 lb/in³	7634 kg/m³
MEAN COEFFICIENT OF THERMAL EXPANSION	77 to 750°F (25 to 399°C)	7.35×10^{-6} length/length/°F	13.23×10^{-6} length/length/°C
ELECTRICAL RESISTIVITY	70°F (21°C)	240.7 ohm-cir-mil/ft	40 microohm·cm
CURIE TEMPERATURE	_	1470°F	799°C


Magnetic properties

Magnetic properties are determined in accordance with ASTM A341. Diameters less than 1 in. (25.4 mm) are determined on a 10 in. (25.4 cm) long specimen on a Fahy permeameter. Diameters 1 in. (25.4 mm) are larger are evaluated on solid ring specimens machined from a disc.

Specimens are annealed at 1550°F (843°C) 2 hours in a wet hydrogen atmosphere and furnace cooled at a rate of 100°F (55.6°C) per hour to 1000°F (538°C) and any cooling rate thereafter.


DC hysteresis

ANNEALED AT 1550°F (843°C)/2 HR/AGED AT 302°F (150°C)/100 HR

Normal DC magnetization curves

ANNEALED AT VARIOUS TEMPERATURES

SATURATION FLUX DENSITY (Bs)	20600 G	20.6 kG
COERCIVITY	0.700 Oe	
MAXIMUM PERMEABILITY	5000	
RESIDUAL INDUCTION	5500 G	5.5 kG
TREATMENT FOR FINAL CLOSED PACK ANNEAL	1550°F	843°C

Typical mechanical properties

5/8 IN (15.87 MM) DIAMETER BAR												
HEAT TREATMENT	0.2% YIE STRENG		ULTIMAT STRENGT	E TENSILE TH	ELONGATION IN 4D	HARDNESS						
TREATMENT	ksi	MPa	ksi MPa		%	ROCKWELL B						
Mill anneal	70	483	85	586	Not reported	90						
Annealed ¹	65	448	80	552	40	88						

 $^{^{1}}$ Annealed for magnetic properties — 1550°F (843°C), 4 hrs

Heat treatment

Magnetic property requirements	Items as supplied from the mill are not in the most magnetic soft condition, nor are they supplied to magnetic property requirements. As supplied magnetic property requirements must be approved by the mill.
Heat treatment	Finish fabricated parts must be heat treated to achieve soft magnetic characteristics. Suggested heat treating atmosphere is a wet hydrogen atmosphere in the temperature range of $1550/1600^{\circ}F$ ($843/871^{\circ}C$), 2 to 4 hours at temperature and cooled at a rate of $100/200^{\circ}F$ ($38/93^{\circ}C$) per hour to $1000^{\circ}F$ ($538^{\circ}C$) and any rate thereafter.
Other heat treating atmospheres	Other heat treating atmospheres can be employed, such as nitrogen-hydrogen combinations, vacuum, exothermication, and inert atmosphere retort. Resulting magnetic characteristics will not be as good as the wet hydrogen atmosphere, which provides the best degree of decarburization.
Other heat treatment temperatures	Other heat treatment temperatures in the range of 1350°F (732°C) to 1900°F (1038°C) can be employed to achieve certain advantages such as brazing and fine grain size as required by end application. A sacrifice in certain magnetic characteristics will be realized. A dry atmosphere must be employed at 1750°F (954°C) and above.

Workability

Cold working

Cold working and cold forming properties are of the same order as the non-free-machining Silicon Core Iron B (2.5% silicon core iron). Only thin machine sections (less than 1/16 in. [1.60 mm]) thick can be formed.

Typical feeds and speeds

TURNING — SINGLE-POINT AND BOX TOOLS											
DEPTH OF CUT. IN	HIGH-SPEED 1	TOOLS		CAF	CARBIDE TOOLS						
	SPEED,	FEED,	TOOL	SPE	SPEED, FPM		FEED,	TOOL			
0. 00.,	FPM	IPR	MATERIAL	BRA	AZED	THROW AWAY	IPR	MATERIAL			
.150	120	.015	M-2	400)	485	.020	C-6			
.025	160	.007	M-3	475	;	625	.007	C-7			

TURNING — CUT-OFF AND FORM TOOLS												
	FEED, IPR											
SPEED, FPM	CUT-OFF T	CUT-OFF TOOL WIDTH, IN			FORM TOOL WIDTH, IN					TOOL MATERIAL		
	1/16	1/8	1/4		1/2	1	1-1/2	2		MATERIAL		
110	.002	.0025	.003		.0025	.0025	.0015	.0015		M-2		
340	.004	.006	.008		.006	.005	.004	.003		C-6		

DRILLING										
	FEED, IPR								TOOL	
SPEED, FPM	NOMINAL	NOMINAL HOLE DIAMETER, IN								
	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	- MATERIAL	
80-85	.001	.003	.005	.010	.013	.016	.020	.025	M-42	

TAPPING	
SPEED, FPM	TOOL MATERIAL
25-30	M-1, M-7, M-10

DIE THREADING	;							
SPEED, FPM				— TOOL MATERIAL				
7 OR LESS	8 TO 15	16 TO 24	25 AND UP, TPI					
10-20	15–25	20-35	25-40	M-1, M-2, M-7, M-10				

MILLING — EN	MILLING — END PERIPHERAL													
HIGH-SPEED TOOLS							CARBIDE TOOLS							
DEPTH		FEED, I	N PER TOO	тн				FEED, IN PER TOOTH						
OF CUT, IN.	SPEED, FPM	CUTTE	R DIAMETI	ER, IN		TOOL MATERIAL	SPEED, FPM	CUTTER	RDIAMET	ER, IN		TOOL MATERIAL		
	1114	1/4	1/2	3/4	1-2	MATERIAL	11.14	1/4	1/2	3/4	1-2	MATERIAL		
.050	80	.002	.003	.005	.007	M-42	350	.0025	.005	.007	.009	C-6		

Additional machinability notes

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be adjusted for best production results with optimum tool life. Speeds and feeds should be increased or decreased in small steps.

Other information

Applicable specifications ASTM A867 Alloy 2F

For additional information, please contact your nearest sales office:

electrification@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make their own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation.