

CarTech[®] SCF 19[®] Max Alloy

Identification

UNS Number

• S21000

Type Analysis							
Single figures are nominal except where noted.							
Carbon (Maximum)	0.04 %	Manganese	4.00 to 7.00 %				
Phosphorus (Maximum)	0.030 %	Sulfur (Maximum)	0.003 %				
Silicon (Maximum)	0.60 %	Chromium	18.00 to 23.00 %				
Nickel	16.00 to 20.00 %	Molybdenum	4.00 to 6.00 %				
Nitrogen	0.35 %	Iron	Balance				

General Information

Description

CarTech SCF 19 Max alloy is an austenitic, nitrogen-strengthened stainless steel containing 5% Mo for improved stress-corrosion-cracking resistance. The alloy can be warm worked to achieve a minimum yield strength of 140 ksi. Because of its combination of stress-corrosion-cracking resistance, chloride pitting resistance, high strength, and low magnetic permeability it has been used as a nonmagnetic drill collar and MWD/LWD housing alloy in some of the harshest drilling environments. Laboratory and field evaluations have shown its superiority over the conventional chromium-manganese stainlesses commonly used for such applications.

CarTech SCF 19 Max has been used for the following oil and gas well drilling components:

Drill collars

- MWD/LWD housings

Corrosion Resistance

CarTech[®] SCF 19[®] Max Alloy

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Moderate
Phosphoric Acid	Moderate	Acetic Acid	Good
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Excellent
Sea Water	Good	Sour Oil/Gas	Good
Humidity	Excellent		

Typical Pitting Corrosion Resistance — SCF-19® Max Alloy

Alloy	Pitting Potential (m Volts recorded at current shown)						
	50ų A/cm²	100ų A/cm ²	2/00ų A/cm²				
SCF-19 Max Alloy	1055	1105	1115				
Competitive Cr-Mn-N Stainless	- 23	- 2	23				

Test Solution: Nitrogen purged 8% CI (as NaCI) at room temperature.

Stirred solution at 20-23°C (68-73°F), initial pH of 6.8-7.0, scan rate at 0.1 m Volts/sec. Higher potential is indicative of higher pitting resistance.

Typical Stress Corrosion Cracking Resistance — SCF 19® Max Alloy

Alloy	Tensile S	Tensile Fracture		
	Ksi	MPa	Time	
SCF-19 Max Alloy	120	828	1000 hrs. – No Failure	
Competitive Cr-Mn-N Stainless	80	552	215 Hours	

Test Solution: Boiling saturated sodium chloride with 2.5 wt % ammonium bisulfate (simulated drilling fluid). Note, higher stress used for more resistance SCF19 Max.

Properties						
Physical Properties						
Specific Gravity	7.96					
Density	0.2880 lb/in ³					
Mean Specific Heat (79 to 240°F)	0.1220 Btu/lb/°F					
Mean CTE						
77 to 212°F	8.93 x 10 ⊸ in/in/°F					
77 to 350°F	9.06 x 10 ⊸ in/in/°F					
77 to 392°F	9.11 x 10 ⊸ in/in/°F					
77 to 482°F	9.23 x 10 ⊸ in/in/°F					
77 to 572°F	9.32 x 10 ⊸ in/in/°F					
77 to 662°F	9.42 x 10 ⊸ in/in/°F					
77 to 752°F	9.51 x 10 ⊸ in/in/°F					
77 to 842°F	9.61 x 10 ⊸ in/in/°F					
77 to 932°F	9.64 x 10 ⊸ in/in/°F					
77 to 1022°F	9.72 x 10 ⊸ in/in/°F					

Mean Coefficient of Thermal Expansion

Tem	perature	10*/°F	10*/K
77°F to	25°C to		
212	100	8.93	16.08
350	150	9.06	16.30
392	200	9.11	16.40
482	250 9.23	9.23	16.61
572	300	9.32	16.77
662	350	9.42	16.95
752	400	9.51	17.11
842	450	9.61	17.29
932	500	9.64	17.35
1022	550	9.72	17.50

Thermal Conductivity

122°F	81.10 BTU-in/hr/ft²/°F
212°F	85.30 BTU-in/hr/ft²/°F
392°F	98.40 BTU-in/hr/ft²/°F
572°F	117.9 BTU-in/hr/ft²/°F
752°F	141.4 BTU-in/hr/ft²/°F

Thermal Conductivity

Test Temperature		Btu-in/ft²+h+°F	₩/m•K		
°F	°C				
122	50	81.1	11.7		
212	100	85.3	12.3		
392	200	98.4	14.2		
572	300	117.9	17.0		
752	400	141.4	20.4		

Modulus of Elasticity (E)

Electrical Resistivity

Typical Mechanical Properties

Typical Room Temperature Mechanical Properties — SCF 19® Max Alloy

Condition	0.2% Yield Strength		Ultimate Tensile Strength		% longation in 4D	% Reduction of Area	Charpy V-Notch Impact Strength	
	ksi	MPa	ksi	MPa		ě.	Ft-lbs.	J
Bar – 7.50" Warm-Worked (191 mm) Round	144	994	159	1097	25	74	187	253
Bar – 5.50" Warm-Worked (140 mm) Round	145	1000	163	1124	25	69	220	298

Heat Treatment

Annealing

SCF 19 Max alloy is generally used in the as-forged, warm-worked condition. However, if annealing is desired, heat to 2150°F (1177°C), hold for one hour per inch of thickness, and water quench. The strength of annealed SCF 19 Max will be greatly reduced since high strength is imparted through warm working.

Workability

Machinability

SCF 19 Max alloy machines similarly to chromium-manganese nitrogen-strengthened stainless steels. Following are typical feeds and speeds.

81.10	BTU-in/hr/ft²/°F
85.30	BTU-in/hr/ft²/°F
98.40	BTU-in/hr/ft²/°F
117.9	BTU-in/hr/ft²/°F
141.4	BTU-in/hr/ft²/°F

27.7 x 10 3 ksi

549.0 ohm-cir-mil/ft

Typical Machining Speeds and Feeds – SCF 19® Max Stainless

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Turning—Single-Point and Box Tools

Depth	ŀ	ligh Speed Tool	s	Carbide Tools (Inserts)				
of Cut	Tool			Tool	Speed	(fpm)	Feed	
(Inches)	Material	Speed (fpm)	Feed (ipr)	Material	Uncoated	Coated	(ipr)	
.150	M2	55	.015	C6	250	300	.015	
.025	T15	70	.007	C7	300	350	.007	

Turning—Cut-Off and Form Tools

Tool Ma	terial		Feed (ipr)							
High	Car-	Speed	Cut-Off Tool Width (inches)				Form Tool	Width (inc	hes)	
Speed Tools	bide Tools	(fpm)	1/16	1/8	1/4	1/4 1/2			1 ½	2
T15		40	.001	.001	.0015	.00	115	.001	.0007	.0007
	C6	140	.004	.0055	.0045	.00	04	.003	.002	.002

Rough Reaming

High Speed		Carbide Tools		Feed (ipr) Reamer Diameter (inches)							
Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1/8	1/4	1/2	1	1 ½	2		
M7	60	C2	80	.003	.005	.008	.012	.015	.018		

Drilling

	High Speed Tools										
Tool	Speed (inches per revolution)										
Material			Nominal Hole Diameter (inches)								
	(fpm)	1/16	1/8	1/4	1/2	3/4	1	1 1/2	2		
T15, M42	45-50	.001	.002	.004	.007	.010	.012	.015	.018		

Drilling

	High Speed Tools										
Tool Feed (inches per revolution)											
Material			Nominal Hole Diameter (inches)								
	(fpm)	1/16	1/8	1/4	1/2	3/4	1	1 1/2	2		
T15, M42	45-50	.001	.002	.004	.007	.010	.012	.015	.018		

Die Threading

FPM for High Speed Tools									
Tool Material 7 or less, tpi 8 to 15, tpi 16 to 24, tpi 25 and up, tpi									
T15, M42	4-8	6-10	8-12	10-15					

Milling, End-Peripheral

Depti		Carbide Tools										
orCut	Tool	Spe ed	Feed	Feed (p); Cutter Diameter (II)				Spe ed	Feed (⊫pt) Cutte	er Diame	ster (li)
(Inches)	Material	(tipin)	1/4				Material	(tipin)	1/4	1/2	3/4	1-2
.050	M2, M7	65	.001	.002	.003	.004	C2	245	.001	.002	.003	.005

Tapping		Broaching		
High Sp	eed Tools		High Speed Tool:	8
Tool Material	Speed (tpm)	Tool Material	Speed (fpm)	Chip Load (ipt)
M1, M7, M10	12-25	M2, M7	10	.003

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (sfpm) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Weldability

SCF 19 Max alloy can be readily joined by standard electric-arc welding methods. Welding consumables of matching composition are not currently available; however, other stainless steel consumables may be used depending on the application. Because the alloy

CarTech[®] SCF 19[®] Max Alloy

achieves high strength primarily through warm working, the weld and areas adjacent to the weld will have significantly reduced strength compared to base metal.

Other Information

Forms Manufactured

Bar-Rounds

Hollow Bar

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 1/21/10