

CarTech® S2 Tool Steel

	Identification	
UNS Number		
• T41902		
AISI Number		

• Type S2

	Ţ	ype Analysis	
Single figures are nomi	nal except where noted.		
Carbon	0.50 %	Manganese	0.40 %
Silicon	1.00 %	Molybdenum	0.50 %
Iron	Balance		

General Information

Description

CarTech S2® tool steel is a water hardening steel possessing extreme toughness. Even at Rockwell C 59/60, it will bend before it breaks. When hardened in medium and large size sections, CarTech S2 tool steel develops a hard case and a tough core. The combination of extreme toughness, hardness and wear resistance makes CarTech S2 tool steel suitable for use in many applications where other tool steels will not perform.

Applications

CarTech S2 tool steel should be considered for tools or parts that require extreme toughness or must not break. Examples Include:

Punches

Knock-out pins

Clutch pins

Indexing pins

Trimming dies

Crimping dies

Swaging dies

Wrenches

Fingers

Shear blades

Heavy-duty forming tools

Heavy-duty coining dies

Special knurls

Stamps

Jaws

CarTech S2 tool steel has also found application in "battering tools," such as:

Pneumatic chisels

Vanstoning dies

Concrete breakers

Caulking tools

Rivet busters

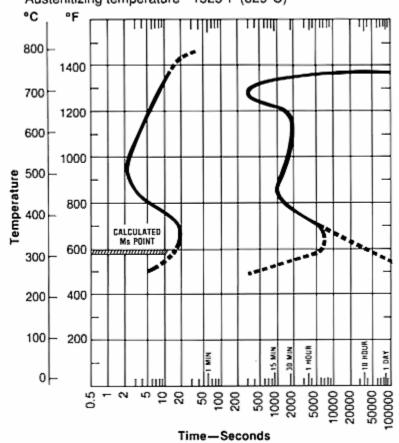
Beading tools

Track chisels

Pipe cutter wheels

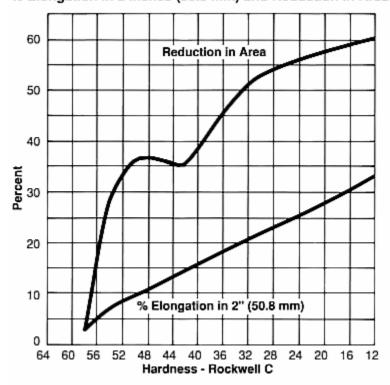
Screw drivers

Rivet sets

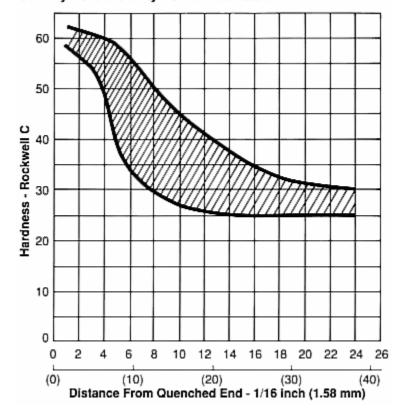

	Properties
Physical Properties	
Mean CTE	
68 to 212°F	6.04 x 10 ∘ in/in/°F
68 to 392°F	6.63 x 10 ⋅ in/in/°F
68 to 572°F	7.24 x 10 ⋅ in/in/°F
68 to 752°F	7.54 x 10 ⋅ in/in/°F
68 to 932°F	7.83 x 10 ⋅ in/in/°F
68 to 1112°F	8.01 x 10 ∘ in/in/°F
68 to 1292°F	8.12 x 10 ⋅ in/in/°F
68 to 1382°F	8.22 x 10 ⋅ in/in/°F

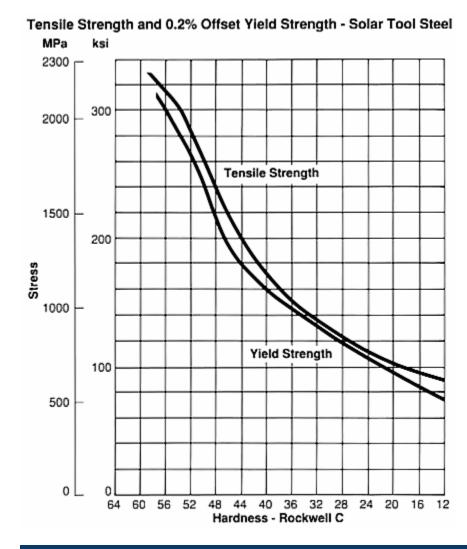
Mean coefficient of thermal expansion

The following figures are the average coefficients between room temperature and the specified elevated temperature. They represent material in the annealed condition and the dimensions are in in/in/° temperature.


68°F to	20°C to	104/°F	10⁴/°C
212	100	6.04	10.9
392	200	6.63	11.9
572	300	7.24	13.0
752	400	7.54	13.6
932	500	7.83	14.1
1112	600	8.01	14.4
1292	700	8.12	14.6
1382	750	8.22	14.8

Isothermal transformation diagram - Solar Tool Steel Austenitizing temperature - 1525°F (829°C)




Typical Mechanical Properties

% Elongation in 2 inches (50.8 mm) and Reduction in Area - Solar Tool Steel

Jominy Hardenability - Solar Tool Steel

Heat Treatment

Decarburization

Solar tool steel, like all high-carbon tool steels, is subject to decarburization during thermal processing and precautions must be taken to control this condition. Modern furnaces are available which provide environments designed to minimize decarburization.

Normalizing

Forgings are normalized by heating to 1650°F (899°C) and cooling in air.

Annealing

For annealing, Solar tool steel should either be placed in a controlled atmosphere furnace or packed in a suitable container, using a neutral packing compound. Heat uniformly to 1375/1425°F (746/774°C) and cool very slowly in the furnace at a rate of no more than 20°F (11°C) per hour until the furnace is black. The furnace may then be turned off and allowed to cool naturally. This will produce a maximum hardness of Brinell 202.

Hardening

During hardening, suitable protection should be provided to prevent excessive scaling and decarburization.

First, heat the salt bath or furnace to 1550°F (843°C). Without preheating, place the tool right in the hot furnace near the thermocouple and let it heat naturally until it uniformly matches the color of the thermocouple. Soak five minutes per inch of thickness, then quench in brine.

All water hardening steels should be guenched in 5% to 10% brine and may be guenched right down to bath temperatures.

Use flushing fixtures for quenching tools having hollow impressions.

Small tools under about 1/2" (12.7mm) in diameter can be heated to 1600°F (871°C) in controlled atmosphere furnaces or neutral salt baths and quenched in oil. This procedure results in less distortion and size change and less danger of cracking.

Control of decarburization can be accomplished by using any one of the several modern heat treating furnaces designed for this purpose. If endothermic atmospheres are used, a dew point between +45/50°F (+7/10°C) is suggested.

In older type manually operated exothermic atmosphere furnaces, an oxidizing atmosphere is required. Excess oxygen of about 2 to 4% is preferred.

If no atmosphere is available, the tool should be pack hardened or wrapped in stainless steel foil to protect its surface.

Deformation (Size Change) in Hardening

Solar tool steel tends to expand in large sizes where a straight carbon tool steel would shrink. Rectangular blocks of Solar tool steel will tend to harden with concave faces (the flat surfaces will become slightly hollow) where a straight carbon tool steel would bulge under similar conditions. Holes bored in Solar tool steel will tend to expand or open up in heat treatment. Allowance should be made for this size change. Solar tool steel is not suitable for use in tools and dies which require extreme accuracy during hardening.

Stress Relieving

To relieve machining stresses for greater accuracy in hardening - first, rough machine, then anneal below the critical from 1200/1250°F (649/677°C) and cool slowly - then finish machine.

Tempering

Solar tool steel should be tempered to achieve the hardness shown by the hyperlink titled "Effect of Tempering Temperature on Hardness." Most tools should be tempered at 300°F (149°C) to produce a hardness of Rockwell C 59/60. Shanks of pneumatic chisels should be tempered at 900°F (482°C). When Solar tool steel is oil quenched from 1600°F (871°C), temper at 275/300°F (135/149°C) to relieve hardening strains.

Do not temper solar tool steel to color because a straw color begins to appear at 400°F (204°C) - which is too high a temperature for most tools. Solar tool steel may be tempered back and used at lower hardnesses if evaluation of the application indicates that the sacrifice in wear resistance and gain in ductility warrant the higher tempering temperature.

Effect of Tempering Temperature on Hardness - Solar Tool Steel

Specimens brine or oil quenched from 1550/1600°F (843/871°C) and tempered 1 hour at indicated temperature.

	pering erature	Rockwell C Hardness
°F	°C	rial diress
As qu	enched	61/63
300	149	59/60
400	204	57/58
500	260	55/56
600	316	54/55
700	371	52/53
800	427	49
900	482	45
1000	538	42/43
1100	593	38
1200	649	31
1300	704	23/24

Workability

Forging

Forge from a temperature not over 2100°F (1149°C). Heat rapidly and avoid unnecessary soaking in order to minimize surface decarburization. Cool the forgings in dry air.

Machinability

The machinability of Solar tool steel may be rated between 65/75% of a 1% carbon water hardening tool steel, or about 45/55% of B1112. Approximate turning speeds of 85/110 surface feet per minute (0.43/0.56 m/s) are suggested when using high-speed cutting tools.

Following are typical feeds and speeds for Solar tool steel.

Turning-Single Point and Box Tools

	Hig	h-Speed To	ools		Carbid	e Tools		
Depth	0			Speed	Speed, fpm			
Cut In.	Speed, fpm	Feed, ipr	Tool Material	Brazed	Throw Away	Feed, ipr	Tool Material	
.150	90	.015	M-2	310	410	.020	C-6	
.025	100	.007	M-3	410	500	.007	C-7	

Turning-Cut-Off and Form Tools

		Feed, ipr										
Speed, Cut-Off Tool Width, Inches				Form Tool Width, Inches								
	1/16	1/8	1/4	1/2	1	1-1/2	2					
75	.0015	.002	.0025	.0025	.0015	.0015	.001	M-2				
250	.004	.005	.006	.005	.0035	.0035	.0025	C-6				

Drilling

Speed, fpm									Tool Material
.p	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	material
55	.001	.002	.003	.007	.009	.011	.014	.016	M-1; M-10

Reaming

		High	-Speed T	ools			Ca	rbide To	ols
	Speed, Feet, Inches per Rev Reamer Diameter, Inches						71		71
speed, fpm							Tool Material	Speed, fpm	Tool Material
.,	1/8	1/4	1/2	1	1-1/2	2	I I I I I I I I I I I I I I I I I I I	.,	
85	.003	.005	.008	.011	.015	.018	M-7	250	C-2

Milling-End Peripheral

	High-Speed Tools					Carbide Tools							
Depth	Feed	-Inch	s per 1	Tooth	71	Consid	Feed—Inches per Tooth			Tooth	Tool		
of Cut In.	Speed, fpm	Cutte	er Diam	eter, In	ches	Material		Tool Speed,	fpm	Cutter Diameter, Inches			Tool Material
		1/4	1/2	3/4	1-2			1/4	1/2	3/4	1-2		
.050	85	.002	.003	.004	.005	M-2; M-7	365	.002	.003	.005	.007	C-6	

Broaching

Speed, fpm	Chip Load, Inches per Tooth	Tool Material
15	.003	M-42

Sawing-Power Hack Saw

M	Pitch—Teeth per Inch Material Thickness, Inches		Speed	Feed	
Under 1/4	1/4- 3/4	3/4- 2	Over 2	Strokes/Minute	Inches/Stroke
10	6	6	4	140	.006
10	6	6	4	70	.003
10	10	6	4	85	.003
10	10	6	4	55	.005
10	8	6	4	75	.003

CarTech® S2 Tool Steel

Additional Machinability Notes

Figures used for all metal removal operations are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds and feeds should be increased or decreased in small steps.

Weldability

Solar tool steel can be satisfactorily welded under normal conditions. It is important that welding rod of the same type analysis is used. Brazing of insert dies of carbide tools on shanks of Solar tool steel has also been successfully done.

Other Information		
Applicable Specifications		
• ASTM A681	• QQ-T-570	
Forms Manufactured		
Bar-Rounds	• Billet	

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 08/01/1990