

CarTech[®] PremoMet[®] Alloy

Identification

UNS Number

• K63835

	Type Analysis						
Single figures are nominal except where noted.							
Carbon	0.40 %	Manganese	0.90 %				
Silicon	1.50 %	Chromium	1.25 %				
Nickel	3.80 %	Molybdenum	0.50 %				
Copper	0.50 %	Vanadium	0.30 %				
Iron	Balance						

General Information

Description

CarTech PremoMet alloy is a premium-melted, cobalt-free, high strength, high toughness quenched and tempered alloy. This alloy attains a typical 290 ksi (1999 MPa) UTS combined with a typical range of 60-65 ksi sqrt(in) (66-71 MPa sqrt(m)) fracture toughness. It also exhibits excellent fatigue life of 180 ksi (1241 MPa) stress at 1x10⁷ cycles Run-Out in Axial (R=0.1, Kt=1, 25 Hz) Fatigue.

Corrosion Resistance

PremoMet alloy is not a stainless alloy and may require plating or coating with a rust preventative or oil to prevent corrosion.

The K1scc (as measured in a Rising Step Load Test) of PremoMet alloy is 11.0 ksi sqrt(in) (12.1 MPa sqrt(m)) in a 3.5% NaCl solution.

Properties

Physical Properties	
Mean CTE	
75 to 100°F, Annealed	6.15 x 10 ₅ in/in/°F
75 to 200°F, Annealed	6.60 x 10 [.] in/in/°F
75 to 300°F, Annealed	6.72 x 10 ₅ in/in/°F
75 to 400°F, Annealed	6.86 x 10 ₅ in/in/°F
75 to 500°F, Annealed	6.97 x 10 ₅ in/in/°F
75 to 600°F, Annealed	7.09 x 10 ₅ in/in/°F
75 to 700°F, Annealed	7.21 x 10 ₅ in/in/°F
75 to 800°F, Annealed	7.33 x 10 ₅ in/in/°F
75 to 900°F, Annealed	7.50 x 10 ₅ in/in/°F
75 to 1000°F, Annealed	7.64 x 10 ₅ in/in/°F
75 to 100°F, Heat Treated	6.49 x 10 ₅ in/in/°F
75 to 200°F, Heat Treated	6.56 x 10 ₅ in/in/°F
75 to 300°F, Heat Treated	6.61 x 10 ₅ in/in/°F
75 to 400°F, Heat Treated	6.77 x 10 ₅ in/in/°F
75 to 500°F, Heat Treated	6.88 x 10 ₅ in/in/°F
75 to 600°F, Heat Treated	6.99 x 10 ₅ in/in/°F
75 to 700°F, Heat Treated	7.05 x 10 ₅ in/in/°F
75 to 800°F, Heat Treated	6.86 x 10 ^₅ in/in/°F
75 to 900°F, Heat Treated	6.25 x 10 ^₅ in/in/°F
75 to 1000°F, Heat Treated	6.42 x 10 ∘ in/in/°F

Temp	Temperature		Coefficient					
75⁰F to	24°C to	Ann	ealed	Heat Tr	eated			
75 F 10	24 °C 10	10 ⁻⁶ /°F	10 ⁻⁶ /°C	10 ⁻⁶ /⁰F	10 ⁻⁶ /⁰C			
100	38	6.15	11.07	6.49	11.68			
200	93	6.60	11.88	6.56	11.81			
300	149	6.72	12.10	6.61	11.90			
400	204	6.86	12.35	6.77	12.19			
500	260	6.97	12.55	6.88	12.38			
600	316	7.09	12.76	6.99	12.58			
700	371	7.21	12.98	7.05	12.69			
800	427	7.33	13.19	6.86	12.35			
900	482	7.50	13.50	6.25	11.25			
1000	538	7.64	13.75	6.42	11.56			

Mean Coefficient of Thermal Expansion

Annealed = 1250°F/677°C (8 hr) Air Cool

Heat Treated = 1685°F/918°C (1.5 hr) + GQ + -100°F/-73°C (8 hr) + AW + 500°F/260°C (2 hrs) + AC

Poisson's Ratio

Electrical Resistivity

0.289

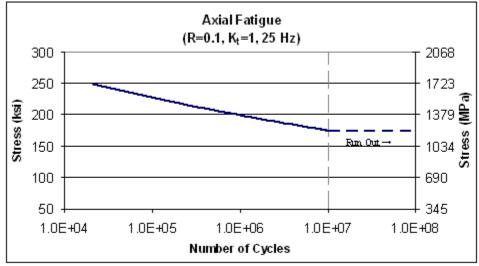
108.3 ohm-cir-mil/ft

Phase Transition Temperatures*: Pearlite = 1331°F (722°C) Bainite = 758°F (403°C) Ferrite = 1342°F (728°C) Martensite: Start = 495°F (257°C) 50% = 427°F (219°C) Finish (90%) = 270°F (132°C)

*software calculated

Young's Modulus = 30.1 x 10⁶ psi (207.5 x 10³ MPa)

Shear Modulus = 11.7 x 10⁶ psi (80.7 x 10³ MPa)


Typical Mechanical Properties

Typical Annealed Mechanical Properties – PremoMet Alloy

Orient.	Yie Strei		Ultimate Tensile Strength		Elong.	<u> </u>	Hardness	Hardness
	ksi	MPa	ksi	MPa	(%)	(%)	HRC	BHN
L	133.0	917	176.0	1213	13.3	35.5	34.5	302
Т	137.0	945	180.0	1241	12.6	33.6		

Heat Treatment = 1250°F (677°C) (8 h) A.C.

Typical Axial Fatigue Properties – PremoMet Alloy

Size Tested: 3/4" rd. bar

Heat Treated: 1685°F/918°C (1.5 hr) + GQ + -100°F/-73°C (8 hr) + AW + 500°F/260°C (2 hrs) + AC Runout defined as 1x10⁷ cycles

Load controlled

Typical Heat Treated Fracture Toughness and Stress Corrosion Cracking Resistance – PremoMet Alloy

Orient.	Fracture Tou	ıghness (K _{lc})	Stress Corrosion Cracking Resistance (K _{isce})		
	ksi√in	MPa√	ksi√	MPa√	
L	61.3	67.4	11.0	12.1	

Heat Treated: 1685°F/918°C (1.5 hr) + GQ + -100°F/-73°C (8hr) + AW + 500°F/260°C (2hrs) + AC Data represents an average of production tests.

Typical Heat Treated Mechanical Properties – PremoMet Alloy

Orient.		ield ength	Ter	mate nsile ength	Elong. (%)	R.A.	CVN Impact Energy at Room	dness IRC	dness HN
			ksi			(%)	Temperature ft-lbs	Har	Hardn BHI
L	239	1649	295	2037	12	45	16.4 (22.2 J)	54	555

Size: ¾" bar

Heat Treated: 1685°F/918°C (1.5 hr) + GQ + -100°F/-73°C (8 hr) + AW + 500°F/260°C (2 hrs) + AC Data represents an average of production tests.

Heat Treatment

Decarburization

Like other carbon bearing high strength alloys, PremoMet alloy is subject to decarburization during hardening. Heat treatment should take place in a neutral atmosphere furnace, salt bath or vacuum. Decarburization should be determined by comparing the surface and internal hardness of a small test cube for proper response.

Normalizing

The normalizing treatment is 1700°F (927°C) for 1 hour followed by air cooling to room temperature. Suggested use of normalization is for grain conditioning of large forgings prior to annealing.

Annealing

Optimum softening for machining is obtained by following the normalizing treatment with annealing. PremoMet alloy is annealed using a 1250°F (677°C) treatment for 8 hours. The optimum annealed hardness of 35-40 HRC maximum is obtained following this anneal.

Austenizing

The austenitizing treatment temperature range is 1685°F +/- 25°F (918°C +/- 14°C) for 1.5 hours. The austenitizing temperature must be monitored by a thermocouple attached to the load.

Quenching

Water quenching is not recommended. PremoMet alloy should be air cooled or oil quenched to develop optimum properties.

Cold Treatment

Following cooling to room temperature, to obtain the full toughness capability, PremoMet alloy should be cooled to -100°F (-73°C) and held at temperature for a minimum of 1 hour. The parts can then be air warmed to room temperature.

Tempering

The standard temper for PremoMet alloy is 500°F (260°C) for 2 hours followed by air cooling to room temperature.

Workability

Forging

Primary breakdown forging of PremoMet alloy should be done at a maximum starting temperature of 2100°F (1150°C). Finish forging should be done from 1800°F (982°C) with a finishing temperature below 1650°F (899°C) in order to optimize the final heat treated properties.

Following forging, the parts should be air cooled to room temperature and then normalized in order to restore properties to the dead zone. The normalized forgings should then be annealed/overtempered to obtain optimum softening for machining.

Machinability

PremoMet alloy is somewhat more difficult to machine than 4340 at Rockwell C 40. The following data was obtained from internal and external studies.

*Mitsui Seiki® Horizontal Milling Machining Center HS6a						
Attribute	11-24-	Suggested Machining Parameters				
	Units	Roughing	Finishing			
Material Condition		Annealed (35 HRC)	Hardened (54 HRC)			
Speed	ft/min (SFM)	311.67	250			
speed	mm/min	95	76.2			
Diameter	Inch	0.9842	1.2598			
	mm	25	32			
Revolutions	rpm	1209	758			
Number	Number of flutes	4	6			
Feed Per	inch (IPT)	0.00963	0.002			
Tooth	mm	0.24	0.05			
	inch/min (IPM)	45.1181	9.4881			
Feed	mm/min	1146	241			
	in ³ /min	11.3234	1.7739			
	cm ³ /min	185.56	29.07			
Depth of	inch	1.0039	3.7401			
Cut	mm	25.5	95			
Width of Cut	inch	0.25	-			
Width of Oat	mm	6.35	-			
Tool Number		30601492V1	3060549, 32 mm dia., 6 flute			
Holder		NIKKENBH HSK 100A-C32-135	**System SCHUNK® 209569 32 mm dia., 32095009			
Coolant		ON mark of Mitsui Saiki Inc	OFF (dry cutting)			

*Mitsui Seiki is a registered trademark of Mitsui Seiki Inc. **SCHUNK is a registered trademark of Schunk Intec Incorporated

Suggested Machining Parameters for Drilling									
Condition (Hardness)	Tool	Inserts	Cutting Speed (C-Sp) (RPM's)	Feed Rate (in/rev)	Feed (in/min)	Depth (in.)			
Annealed	0.500"	Mitsubishi® Water Drill/Miracle	85/650	0.005	3.2	0.100 per peck cycle			
(35 HRC)	drill	Solid Carbide Using Through Coolant	156/1150	0.007	6.2	0.100 per peck cycle			

Coolant Used on All Tooling

*Mitsubishi is a registered trademark of Mitsubishi Companies

Suggested Machining Parameters for Slotting								
Condition (Hardness) Tool		Inserts	Cutting Speed (C-Sp) (RPM's)	Feed Rate (in/rev)				
Annealed (35 HRC)	5" Inserted Cutter	Iscar	275	0.020				

Coolant Used on All Tooling

	Suggested Machining Parameters for Milling									
Condition (Hardness)	Tool	Tool Inserts Cutting Speed (C-Sp) (RPM's)		Feed Rate (in/rev)	Depth (in.)					
Annealed (35 HRC)	4" Shell Mill	Walter Tiger Tec WSP 45	280	0.020 Roughing	0.100 per cut					
Hardened (Q & T) (54 HRC)	4" Shell Mill	Walter Tiger Tec WSP 45	300	0.025 Finishing	0.014					
	2.5" Inserted End Mill Using for Side Cutting	*lscar Sumo Tec® IC380	400	0.01	0.015					

Coolant Used on All Tooling

*Iscar Sumo Tec is a registered trademark of Iscar Ltd. Corporation

Suggested Machining Parameters for Turning								
Section	Operation	Condition	Inserts	Cutting Speed (C-Sp) (RPM's)	Feed Rate (in. per rev.)	Depth (in.)		
O.D.	Roughing	Annealed (35 HRC)	Valentine DNMG 432 M6 8525	260	0.003	0.020		
	Finishing	Hardened (Q & T) (54 HRC)	Valentine DNMG 432 M6 8525	275	0.005	0.015		
Gage	Roughing	Annealed (35 HRC)	Valentine TNMG 431 M5 8535	180	0.005	0.010		
	Finishing	Hardened (Q & T) (54 HRC)	Valentine TNMG 431 M5 8535	195	0.002	0.015		
Groove	Roughing	Annealed (35 HRC)	Valentine VLG 3 125 L 5820	250	0.0025	0.200		
Threading ½" – 13 Thread Coolant Used of	Roughing	Annealed (35 HRC)	Scandinavian	245	-	0.010 Start		

Additional Machinability Notes

Figures used for all metal removal operations covered are starting points. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Other Information

Applicable Specifications

• AMS 6482

Forms Manufactured

Bar-Rounds

Wire

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 2/22/12