

CarTech® NCF 3015 Alloy

Identification

UNS Number

• S66315

Type Analysis Single figures are nominal except where noted. Carbon (Maximum) Manganese (Maximum) 0.50 % 0.08 % **Phosphorus (Maximum)** 0.015 % Sulfur (Maximum) 0.010 % Silicon (Maximum) Chromium 0.50 % 13.50 to 15.50 % Nickel 30.00 to 33.50 % Molybdenum 0.40 to 1.00 % Columbium/Niobium Titanium 2.30 to 2.90 % 0.40 to 0.90 % Aluminum Iron 1.60 to 2.20 % Balance

General Information

Description

CarTech NCF 3015 alloy is a precipitation-hardenable, iron-nickel base alloy with mechanical properties between those of the iron-base and the more costly nickel-base alloys that have been used for engine valve applications. The alloy was designed for high strength and corrosion resistance up to 1400°F(760°C).

Applications

Because of its excellent strength and corrosion resistance at elevated temperatures, CarTech NCF 3015 alloy could be considered for engine valve applications. The alloy could also be considered as a replacement for nickel-base superalloys in applications involving the need for strength at elevated temperatures such as fasteners.

Properties

Physical Properties

Density	0.2840 lb/in ³	
Mean CTE		
77 to 212°F	8.30 x 10 ₅ in/in/°F	
77 to 392°F	8.70 x 10 ₀ in/in/°F	
77 to 572°F	8.90 x 10 ₀ in/in/°F	
77 to 752°F	9.00 x 10 ₀ in/in/°F	
77 to 932°F	9.20 x 10 ₀ in/in/°F	
77 to 1112°F	9.30 x 10 ₅ in/in/°F	
77 to 1202°F	9.30 x 10 ₀ in/in/°F	
77 to 1292°F	9.30 x 10 ₀ in/in/°F	
77 to 1382°F	9.70 x 10 ₀ in/in/°F	
77 to 1472°F	10.2 x 10 ⊸ in/in/°F	

Tempe	erature	Coefficient of Expansion		
77°F to	25°C to	10⁴/°F	104/°C	
212	100	8.3	14.9	
392	200	8.7	15.6	
572	300	8.9	16.0	
752	400	9.0	16.2	
932	500	9.2	16.5	
1112	600	9.3	16.7	
1202	650	9.3	16.8	
1292	700 9		16.8	
1382	750	9.7	17.4	
1472	800	10.2	18.3	

Mean coefficient of thermal expansion

Modulus of Elasticity (E)

72°F	29.0	x 10 ₃ ksi
1200°F	22.0	x 10 ₃ ksi
1400°F	20.0	x 10 ₃ksi

Modulus of elasticity

Temp	Temperature		110	
۰F	°C	psi x 10 ⁶	MPa x 10 ³	
72	22	29	200	
1200	649	22	152	
1400	760	20	138	

Electrical Resistivity (72°F)

643.0 ohm-cir-mil/ft 2400 to 2550 °F

1.0170 Mu

Melting Range

Magnetic Properties

Magnetic Permeability (200 Oe)

Typical Mechanical Properties

Charpy V-Notch Impact Strength—NCF 3015 Alloy

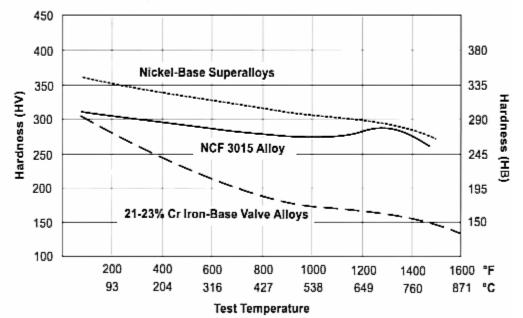
Tests on 0.625" (16 mm) round bar:

Heat treatment: 1922°F (1050°C)/0.5 hour/OQ + 1382°F (750°C)/4 hours/AC

Test Te	emperature	ft-lb.	
۴F	°C		and the second second
70	21	83	113

Elevated Temperature Stress Rupture Properties—NCF 3015 Alloy

Tests on 0.625" (16 mm) round bar:


Heat treatment: 1922°F (1050°C)/0.5 hour/OQ + 1382°F (750°C)/4 hours/AC

Test Temperature		Stress to Produce Rupture in:					
		10 Hours		100 Hours		400 Hours	
°F	°C	ksi	MPa	ksi	MPa	ksi	MPa
1350	732		_	55	380	40	276
1500	816	39	269	23	159	_	-

Hardness vs. Temperature—NCF 3015 Alloy

Tests on 0.625" (16 mm) round bar:

Heat treatment: 1922°F (1050°C)/0.5 hour/OQ + 1382°F (750°C)/4 hours/AC

Tensile Properties—NCF 3015 Alloy

Tests on 0.625" (16 mm) round bar:

Heat treatment: 1922°F (1050°C)/0.5 hour/OQ + 1382°F (750°C)/4 hours/AC

Test Temperature		0.2% Yield Strength		Ultimate Tensile Strength		% Elongation	% Reduction	
۰F	°C	ksi	MPa	ksi	MPa	in 4D	of Area	
70	21	95	655	163	1124	35	54	
800	427	90	621	145	1000	34	55	
1000	538	89	614	143	986	32	53	
1200	649	98	676	138	952	17	20	
1400	760	82	565	92	634		_	

Heat Treatment

Solution Treatment

Heat to 1922°F (1050°C), hold at temperature for a minimum of 30 minutes, then oil quench.

Age

Reheat to 1382°F (750°C), hold at temperature for 4 hours, then air cool.

Workability

Hot Working

NCF 3015 alloy can be forged within the temperature range of 1700/2000°F (927/1093°C). Careful control of the hot working temperature and frictional heat buildup is necessary to avoid hot shortness above 2000°F (1093°C). NCF 3015 alloy is significantly less resistant to deformation at 1700/2000°F (927/1093°C) than nickel-base Pyromet® alloy 751.

Cold Working

Because of higher ductility and lower tensile or compressive strength, the cold workability of NCF 3015 alloy is better than that of precipitation-hardenable nickel-base alloys. Like Pyromet alloy A-286, it is stiffer than austenitic stainless steels and work hardens rapidly.

Grinding and Polishing

The grinding characteristics of NCF 3015 alloy are similar to those of Pyromet alloy 751.

Shearing

For better shearability, it is recommended that the material be cold drawn prior to shearing. Clear shearing is more difficult in the softer as-rolled or solution-treated conditions.

Other Information

Forms Manufactured

Bar-Rounds

Strip

Technical Articles

· A Designer's Manual On Specialty Alloys For Critical Automotive Components

- A Guide to Etching Specialty Alloys for Microstructural Evaluation
- Carpenter 286-LNi Alloy A Lower Cost Option for High Temperature Auto and Truck Fasteners
- · Selecting High Temperature Alloys for Fasteners in Automotive Exhaust Systems
- Selection of Age-Hardenable Superalloys

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 04/01/1987