

Applicable specifications: AMS 5643; ASME SA564; ASTM A564, F899 Associated identifiers: AISI 630, UNS S17400

Type analysis

Single figures are nominal except where noted.

Iron	Balance	Chromium	15.00-17.50 %	Copper	3.00-5.00 %
Nickel	3.00-5.00 %	Manganese	Max 1.00 %	Silicon	Max 1.00 %
Columbium + Tantalum	0.15-0.45 %	Carbon	Max 0.070 %	Phosphorus	Max 0.040 %
Sulfur	Max 0.030%				

Forms manufactured

Bar-Flats	Bar-Hexagons	Bar-Rounds	Bar-Squares
Bui i tuto	Bui liexugello	Bui itoulius	Bui oquuico

Description

Custom 630 Project 70+ (17Cr-4Ni) stainless is an improved-machining version of conventional stainless Type 17Cr-4Ni. The alloy is a martensitic precipitation/age-hardening stainless offering high strength and hardness along with excellent corrosion resistance. It has good fabricating characteristics and can be age hardened by a single-step, low-temperature treatment.

Customers report that Custom 630 Project 70+ offers significantly improved machinability characteristics over conventional stainless Type 17Cr-4Ni. This includes up to 15% and higher machining speeds with improved finishes and longer tool life, with some reports in excess of 40% tool life improvement.

Key Properties:

- High strength and hardness
- Excellent corrosion resistance
- · Good fabricating characteristics

Markets:

- Aerospace
 Defense
 Energy
- Industrial Medical Transportation

Applications:

- · Oil field valve and nuclear reactor components
- · Chemical process equipment, fasteners, shafts, and gears
- · Aircraft and missile fittings
- · Medical instrumentation and surgical tooling

Corrosion resistance

Project 70+ Custom 630 has withstood corrosive attack better than any of the 400 series hardenable stainless steels, and, in most corrodents, its corrosion resistance closely approaches that of stainless Types 302 and 304.

Good resistance to stress-corrosion cracking is gained by hardening at temperatures of 1025°F (552°C) and higher. The alloy also withstands erosion-corrosion well due to the combination of good corrosion resistance and high hardness.

The alloy has acceptable resistance to sulfide stress cracking at Rockwell C 33 maximum hardness per NACE MR-01-75, "Sulfide Stress Cracking Resistant Metallic Materials for Oil Field Equipment." Refer to the current document for details on acceptable conditions.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

IMPORTANT NOTE:

The following 4-level rating scale (Excellent, Good, Moderate, Restricted) is intended for comparative purposes only. Corrosion testing is recommended. Factors that affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish, and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Restricted
Phosphoric Acid	Restricted	Acetic Acid	Moderate
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Good
Sea Water	Restricted	Sour Oil/Gas	Restricted
Humidity	Excellent		

COMPARATIVE CORROSION RATE	S – MILS PER YEAR						
	TYPE 410		TYPE 431		CUSTOM	630 PROJE	CT 70+
CORRODENTS	HARDENED AND TEMPERED 300°F (150°C)	HARDENED AND TEMPERED 1200°F (650°C)	HARDENED AND TEMPERED 500°F (260°C)	HARDENED AND TEMPERED 1200°F (650°C)	Н 900	Н 1025	H 1150
5 w/o H ₂ SO ₄ at 75°F (24°C)	1732 ¹	1218	1402 ¹	2325 ¹	2	3	14 ¹
20 w/o HNO ₃ at 200°F (93°C)	8	59 ²	3	3	2	2	2
50 w/o Acetic Acid Boiling	266 ¹	1627	43 ¹	54	3	3	4

Corrosion rates for one 48-hour period.

¹ Several or all of subsequent 48-hour test periods showed nil rates.

² Rates increased to 200 mpy by 3rd 48 hour test period.

Physical properties

PROPERTY	Condition / At or From	English Units	Metric Units
	Condition A	7.75	7.75
SPECIFIC GRAVITY	Condition H 900	7.80	7.80
SPECIFIC GRAVII I	Condition H 1075	7.81	7.81
	Condition H 1150	7.82	7.82
	Condition A	0.2800 lb/in ³	7750 kg/m³
DENSITY	Condition H 900	0.2820 lb/in³	7800kg/m^3
DENSITY	Condition H 1075	0.2820 lb/in ³	7810 kg/m³
	Condition H 1150	0.2830 lb/in ³	7820kg/m^3
MEAN CRECIFIC HEAT	32 to 212°F (0 to 100°C) Condition A	0.1100 Btu/lb/°F	460 J/kg·K
MEAN SPECIFIC HEAT	32 to 212°F (0 to 100°C) Condition H 900	0.1000 Btu/lb/°F	419 J/kg·K
	70 to 200°F (21 to 93°C) Condition A	6.00 x 10 ⁻⁶ in/in/°F	10.8×10^{-6} length/length/K
	70 to 400°F (21 to 204°C) Condition A	6.00 x 10 ⁻⁶ in/in/°F	10.8 x 10 ⁻⁶ length/length/K
	70 to 600°F (21 to 316°C) Condition A	6.20 x 10 ⁻⁶ in/in/°F	11.2 x 10 ⁻⁶ length/length/K
	70 to 800°F (21 to 427°C) Condition A	6.30 x 10 ⁻⁶ in/in/°F	11.3 x 10 ⁻⁶ length/length/K
	-100 to 70°F (-73 to 21°C) Condition H 900	5.80 x 10 ⁻⁶ in/in/°F	10.4×10^{-6} length/length/K
	70 to 200°F (21 to 93°C) Condition H 900	6.00 x 10 ⁻⁶ in/in/°F	10.8 x 10 ⁻⁶ length/length/K
MEAN COEFFICIENT OF THERMAL EXPANSION (CTE)	70 to 400°F (21 to 204°C) Condition H 900	6.10 x 10 ⁻⁶ in/in/°F	11.0 x 10 ⁻⁶ length/length/K
	70 to 600°F (21 to 316°C) Condition H 900	6.30 x 10 ⁻⁶ in/in/°F	11.3 x 10 ⁻⁶ length/length/K
	70 to 800°F (21 to 427°C) Condition H 900	6.50 x 10 ⁻⁶ in/in/°F	11.7 x 10 ⁻⁶ length/length/K
	70 to 200°F (21 to 93°C) Condition H 1075	6.30 x 10 ⁻⁶ in/in/°F	11.3 x 10 ⁻⁶ length/length/K
	70 to 400°F (21 to 204°C) Condition H 1075	6.50 x 10 ⁻⁶ in/in/°F	11.7 x 10 ⁻⁶ length/length/K
	70 to 600°F (21 to 316°C) Condition H 1075	6.60 x 10 ⁻⁶ in/in/°F	11.9 x 10 ⁻⁶ length/length/K
	70 to 800°F (21 to 427°C) Condition H 1075	6.80 x 10 ⁻⁶ in/in/°F	12.2×10^{-6} length/length/K

Physical properties

PROPERTY	At or From	English Units	Metric Units
	-100 to 70°F (-73 to 21°C) Condition H 1150	6.10 x 10 ⁻⁶ in/in/°F	11.0 x 10 ⁻⁶ length/length/K
	70 to 200°F (21 to 93°C) Condition H 1150	6.60 x 10 ⁻⁶ in/in/°F	11.9 x 10 ⁻⁶ length/length/K
MEAN COEFFICIENT OF THERMAL EXPANSION (CTE)	70 to 400°F (21 to 204°C) Condition H 1150	6.90 x 10 ⁻⁶ in/in/°F	12.4 x 10 ⁻⁶ length/length/K
	70 to 600°F (21 to 316°C) Condition H 1150	7.10 x 10 ⁻⁶ in/in/°F	12.8 x 10 ⁻⁶ length/length/K
	70 to 800°F (21 to 427°C) Condition H 1150	7.20 x 10 ⁻⁶ in/in/°F	13.0×10^{-6} length/length/K
	300°F (149°C) Condition H 900	124.0 Btu-in/hr/ft²/°F	17.9 W/m·K
THERMAL CONDUCTIVITY	500°F (260°C) Condition H 900	135.0 Btu-in/hr/ft²/°F	19.5 W/m·K
THERMAL CONDUCTIVITY	860°F (460°C) Condition H 900	156.0 Btu-in/hr/ft²/°F	22.5 W/m·K
	900°F (482°C) Condition H 900	157.0 Btu-in/hr/ft²/°F	22.6 W/m·K
	Condition H 900	0.272	0.272
POISSON'S RATIO	Condition H 1075	0.272	0.272
	Condition H 1150	0.272	0.272
MODULUS OF ELASTICITY (E)	73°F, Condition H 900	$28.5 \times 10^3 \text{ ksi}$	_
ELECTRICAL RESISTIVITY (RT)	73°F, Condition A	589 ohm-cir-mil/ft	980 microhm·mm
ELECTRICAL RESISTIVITY (RT)	73°F, Condition H 900	463 ohm-cir-mil/ft	770 microhm·mm
	73°F, Condition H 900	11.2 x 103 ksi	_
MODULUS OF RIGIDITY (G)	73°F, Condition H 1075	10.0 x 103 ksi	_
	73°F, Condition H 1150	10.0 x 103 ksi	_

Typical mechanical properties

TYPICAL	CREEP STRENGTI	H — CONDITION H 900				
TEMP		STRESS FOR CRE	EP OF			
IEMP		0.1% IN 1000 HRS	i	0.01% IN 1000 HF	rs .	
°F	°C	ksi	MPa	ksi	MPa	
600	316	135	931	125	862	
700	371	105	724	100	689	
800	427	60	414	43	296	
900	482	23	159	_	_	

ТЕМР		IMPACT S	TRENGTH								
IEMP		H 925		H 1025		H 1150	H 1150				
°F	°C	FT-LB ¹	J	FT-LB ¹	J	FT-LB ¹	J	FT-LB ²	J	FT-LB ²	J
75	24	30	41	75	102	95	129	105	142	95	129
0	-12	16	22	58	79	93	126	_	_	85	115
-40	-40	9	12	40	54	76	103	_	_	75	102
-110	-79	5	7	15	20	48	65	_	_	65	88
-175	-115	_	_	_	_	_	_	_	_	35	47
-250	-157	_	_	_	_	_	_	_	_	18	24
-320	-196	3	4	4	6	6	8	28	38	5	7

 $^{^{\}rm 1}$ Test samples from 1 in (25.4 mm) round bar—longitudinal direction.

² Test samples from 4 in (102 mm) round bar—longitudinal direction.

TYPICAL C	RYOGENIC TENSIL						
ТЕМР		0.2% YIELD	STRENGTH	ULTIMATE 1	ENSILE STRENGTH	ELONGATION IN 2 IN (50.8 MM)	
°F	°C	ksi	MPa	ksi	MPa	%	
75	24	135	931	150	1034	17	
32	0	183	1262	193	1331	16	
-40	-40	189	1303	203	1440	16	
-80	-62	196	1351	209	1441	15	
-320	-196	243	1675	248	1710	8	

TYPICA	YPICAL ELEVATED TEMPERATURE TENSILE PROPERTIES — CONDITION H 900										
TEMP		0.2% YIELD STRENGTH		ULTIMATE	TENSILE STRENGTH	ELONGATION IN 2 IN (50.8 MM)	REDUCTION OF AREA				
°F	°C	ksi	MPa	ksi	MPa	%	%				
RT	RT	183	1262	198	1365	15	52				
600	316	145	1000	172	1186	13	46				
800	427	132	910	160	1103	13	51				
900	482	118	814	138	952	13	55				
1000	538	94	643	115	793	17	64				

CONDITION		0.2% YIELD Strength		E TENSILE 'H	ELONGATION IN 2 IN (50.8 MM)	REDUCTION OF AREA
	ksi	MPa	ksi	MPa	%	%
A	_	_	_	_	_	_
H 900	183	1262	198	1365	15	52
H1025	162	1117	168	1158	16	58
H1075	148	1020	164	1131	17	59
H 1150	126	869	144	993	20	60
H1150M	87	600	123	848	22	66

HARDNESS	HARDNESS		CHARPY V-NOTCH IMPACT STRENGTH		MODULUS OF RIGIDITY (G)	
HRC	BRINELL	FT-LB	J	ksi	MPa	
36	352	_	_	_	_	
44	420	16	21	11.2×10^3	77×10^{3}	
38	352	40	54	-	_	
36	341	45	61	10×10^3	69×10^{3}	
33	311	55	75	10×10^3	69×10^{3}	
29	293	100	136	_	_	
	HRC 36 44 38 36 36 33	HRC BRINELL 36 352 44 420 38 352 36 341 33 311	HARDNESS IMPACT STEE	HARDNESS IMPACT STRENGTH HRC BRINELL FT-LB J 36 352 — — 44 420 16 21 38 352 40 54 36 341 45 61 33 311 55 75	HARDNESS IMPACT STRENGTH RIGIDITY (G)	

TYPICAL STRESS RUPTU	JRE STRENGTH						
CONDITION	ТЕМР		100 HOURS		1000 HOURS		
	°F	°C	ksi	MPa	ksi	MPa	
H 900	/25	220	162	1117	157	1082	
H1075	625	329	137	945	134	924	
H 900	700	271	156	1076	150	1034	
H1075	700	371	126	869	123	848	
H 900	800	427	140	965	128	883	
H 1075	800	427	108	745	103	710	

Heat treatment

Custom 630 Project 70+ is hardened by heating solution-treated (Condition A) material to a temperature between 900°F (482°C) and 1150°F (621°C) for 1 to 4 hours, depending on the temperature, then air cooling. The specific aging temperature chosen depends on the desired properties.

Solution treatment

Condition A (solution treated or annealed): Heat at 1900° F (1038° C) $\pm 25^{\circ}$ F ($\pm 14^{\circ}$ C) for ½ hour, cool to below 90° F (32° C) so that the material is completely transformed to martensite. Sections under 3 in. (76.2 mm) can be quenched in a suitable liquid quenchant and sections over 3 in. (76.2 mm) should be rapidly air cooled.

Do not use this condition without age hardening due to susceptibility to stress-corrosion cracking.

Deformation (size change) in hardening

The precipitation hardening of Custom 630 is accomplished with a slight dimensional change.

- The amount of contraction in hardening solution-treated (Condition A) material to Condition H 900 is about 0.0004 to 0.0006 in./in. (m/m).
- Condition A material when hardened to Condition H 1150 will contract approximately 0.0009 to 0.0012 in./in. (m/m).

Age

 $Condition H\,900\,(precipitation\,or\,age-hardened):\,Heat\,solution-treated\,material\,at\,900^\circ F\,(482^\circ C)\,for\,1\,hour\,and\,air\,cool.$

 $Condition H 925, H 1025, H 1075, H 1100, and H 1150: Heat solution-treated \ material \ at specified \ temperature \ \pm 15^{\circ}F \ (\pm 8^{\circ}C) \ for 4 \ hours \ and \ air \ cool.$

Condition H 1150M: Heat solution-treated material at 1400°F(760°C) \pm 15°F (\pm 8°C) for 2 hours, air cool; then treat at 1150°F (621°C) \pm 15°F (\pm 8°C) for 4 hours and air cool.

Workability

Hot working	Custom 630 Project 70+ can be readily forged, hot headed and upset. Material that is hot worked must be solution treated prior to hardening if the material is to respond properly to hardening.
Forging	Heat uniformly to 2150/2200°F (1177/1204°C) and hold one hour at temperature before forging. Do not forge below 1850°F (1010°C). To obtain optimum grain size and mechanical properties, forgings should be cooled in air to below 90°F (32°C) before further processing. Forgings must be solution-treated prior to hardening.
Cold working	Custom 630 can be cold worked to a limited degree. Due to the proximity of its initial yield strength to its ultimate tensile strength, satisfactory cold working requires precise knowledge of material condition and process parameters. Cold working capability is maximized in the H1150M and H1150D conditions.
Machinability	Custom 630 Project 70+ is readily machined in both the solution-treated and various age-hardened conditions. In the solution-treated condition, it machines similarly to stainless Types 302 and 304. The machinability will improve as the hardening temperature is increased. Condition H 1150M provides optimum machinability. With an optimized machining setup and tooling, it is possible to obtain significant improvement in machinability beyond standard Custom 630 (17-4) by using the Project 70+ variant.
	Having procured Condition H1150M for best machinability, higher mechanical properties can only be developed by solution treating and heat treating at standard hardening temperatures.

Typical feeds and speeds

The feeds and speeds in the following charts are conservative recommendations for initial setup. Higher feeds and speeds may be attainable depending on machining environment.

TURNING — SINGL	E-POINT AND BO	X TOOLS									
		HIGH-SPE	ED TOOLS		CARBIDE TOO	CARBIDE TOOLS					
CONDITION	DEPTH OF CUT. IN	SPEED,	FEED,	TOOL	SPEED, FPM		FEED,	TOOL			
	0. 00 i, iii	FPM	IPR	MATERIAL	UNCOATED	COATED	IPR	MATERIAL			
Solution Treated	.150	90	.015	M-48. T-15	375	475	.015	C-6			
Solution Treated	.025	105	.007	M-48, I-15	425	560	.007	C-7			
Double-Aged	.150	90	.015	M (0 T 15	375	475	.015	C-6			
H 1150M	.025	105	.007	M-48, T-15	425	560	.007	C-7			
Aged H 1075,	.150	70	.015	M / O T 15	325	425	.015	C-6			
H 1100, H 1150	.025	85	.007	M-48, T-15	375	475	.007	C-7			
A	.150	85	.015	M / O T 15	300	375	.010	C-6			
Aged H 1025	.025	80	.007	M-48, T-15	350	425	.005	C-7			
Aged H 900,	.150	40	.010	N (0 T 15	210	275	.010	C-6			
H 925	.025	55	.005	M-48, T-15	250	310	.005	C-7			

TURNING — CUT-OF	F AND FORM TOOLS	5									
		FEED, IP	R	TOOL MATERIAL							
CONDITION	SPEED, FPM	CUT-OFF	TOOL WID	TH, IN		FORM TO	FORM TOOL WIDTH, IN			CARBIDE	
		1/16	1/8	1/4	1/2	_1	1-1/2	2	TOOLS	TOOLS	
Solution Treated	75	.001	.0015	.002	.0015	.001	.001	.0005	M-48, T-15	_	
Solution Treated	225	.003	.003	.004	.003	.002	.002	.002	_	C-6	
Double-Aged	100	.0015	.002	.0025	.002	.0015	.001	.001	M-48, T-15	_	
H 1150M	250	.003	.003	.0045	.003	.002	.002	.002	_	C-6	
Aged H 1075,	85	.001	.0015	.002	.0015	.001	.001	.0005	M-48, T-15	_	
H 1100, H 1150	225	.003	.003	.0045	.003	.002	.002	.002	_	C-6	
A == 411102E	45	.001	.001	.0015	.0015	.001	.001	.0005	M-48, T-15	_	
Aged H 1025	150	.003	.003	.0045	.003	.002	.002	.002	_	C-6	
A == 411,000, 11,025	35	.001	.001	.0015	.0015	.001	.001	.0005	M-48, T-15	-	
Aged H 900, H 925	125	.0025	.0025	.004	.0025	.0015	.0015	.0015	_	C-6	
			_		_						

ROUGH REAMING													
	HIGH-SPEED	TOOLS	CARBIDE TOO	CARBIDE TOOLS			FEED, IPR, REAMER DIAMETER, IN						
CONDITION	SPEED, FPM	TOOL MATERIAL	SPEED, FPM	TOOL MATERIAL	1/8	1/4	1/2	1	1-1/2	2			
Solution Treated	70	M-48, T-15	200	C-7	.003	.005	.008	.011	.015	.018			
Double-Aged H 1150M	75	M-48, T-15	210	C-2	.003	.005	.008	.011	.015	.018			
Aged H 1075, H 1100, H 1150	55	M-48, T-15	160	C-2	.003	.005	.008	.011	.015	.018			
Aged H 1025	45	M-48, T-15	135	C-2	.003	.004	.006	.010	.013	.018			
Aged H 900, H 925	40	M-48, T-15	110	C-2	.001	.001	.001	.001	.001	.001			

DRILLING — HIGH-SPEED T	UULS	FEED, I	FEED, IPR NOMINAL HOLE DIAMETER, IN									
CONDITION	SPEED, FPM	NOMIN										
		1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	MATERIAL		
Solution Treated	55	.001	.002	.004	.007	.008	.010	.012	.015	M-42		
Double-Aged H 1150M	65	.001	.002	.004	.007	.009	.011	.013	.016	M-42		
Aged H 1075, H 1100, H 1150	50	_	.002	.004	.007	.008	.010	.012	.015	M-42		
Aged H 1025	40	_	.002	.004	.006	.008	.009	.011	.012	M-42		
Aged H 900, H 925	30	_	.001	.002	.003	.004	.004	.004	.004	M-42		

BROACHING — HIGH-SPEED TOOLS										
CONDITION	SPEED, FPM	CHIP LOAD, IN PER TOOTH	TOOL MATERIAL							
Solution Treated	12	.002	M-48, T-15							
Double-Aged H 1150M	15	.002	M-48, T-15							
Aged H 1075, H 1100, H 1150	10	.002	M-48, T-15							
Aged H 1025	10	.002	M-48, T-15							
Aged H 900, H 925	10	.002	M-48, T-15							

TAPPING — HIGH-SPEED TOOLS										
CONDITION	SPEED, FPM	TOOL MATERIAL								
Solution Treated	15–28	M-7, M-10								
Double-Aged H 1150M	17–32	M-7, M-10								
Aged H 1075, H 1100, H 1150	15–28	M-7, M-10								
Aged H 1025	15–22	M-7, M-10								
Aged H 900, H 925	7–17	M-7, M-10 Nitrided								

DIE THREADING — HIGH-SPEED TOOLS										
CONDITION	SPEED, FPM		TOOL MATERIAL							
CONDITION	7 OR LESS, TPI	8 TO 15, TPI	16 TO 24, TPI	25 AND UP, TPI	TOOL MATERIAL					
Solution Treated	7–13	10–18	12–25	18-30	M-2, M-7, M-10					
Aged	5–10	8–12	10–15	12–18	M-42, T-15					

MILLING — END PERIPHERAL														
		HIGH-SPEED TOOLS							CARBIDE TOOLS					
CONDITION	DEPTH		FEED,	IN PER T	оотн				FEED, IPT					
	OF CUT, IN	SPEED, FPM	CUTTE	R DIAMI	ETER, IN		TOOL MATERIAL	SPEED, FPM	CUTTE	R DIAMET	ER, IN PE	R TOOTH	TOOL MATERIAL	
		1114	1/4	1/2	3/4	1-2	MATERIAL	1114	1/4 1/2 3/4 1-2			1-2		
Solution Treated	.050	90	.001	.002	.003	.004	M-48, T-15	280	.001	.002	.004	.006	C-2	
Double-Aged H 1150M	.050	95	.001	.002	.003	.004	M-48, T-15	290	.001	.002	.004	.006	C-2	
Aged H 1075, H 1150	.050	85	.001	.002	.003	.004	M-48, T-15	275	.001	.002	.004	.006	C-2	
Aged H 1025	.050	70	.0005	.001	.002	.003	M-48, T-15	200	.001	.002	.003	.004	C-2	
Aged H 900, H 925	.050	65	.0005	.001	.002	.003	M-48, T-15	100	.001	.002	.003	.004	C-2	

Additional machinability notes

The use of tool coatings is highly suggested, especially when machining in the aged hardened condition. TiCN and TiAIN are two suggestions. See your tool supplier for more information.

Figures used for all metal removal operations covered are starting points. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Custom 630 Project 70+ can be satisfactorily welded by the shielded fusion and resistance welding processes. Oxyacetylene welding is not recommended, since carbon pickup in the weld may occur. When a filler metal is required, AWS E/ER630 welding consumables should be considered to provide welds with properties matching those of the base metal. When designing the weld joint, care should be exercised to avoid stress concentrators, such as sharp corners, threads, and partial-penetration welds. When high weld strength is not needed, a standard austenitic stainless filler, such as E/ER308L, should be considered.

Weldability

Normally, welding in the solution-treated condition has been satisfactory; however, where high welding stresses are anticipated, it may be advantageous to weld in the overaged (H 1150) condition. Usually, preheating is not required to prevent cracking.

If welded in the solution-treated condition, the alloy can be directly aged to the desired strength level after welding. However, the optimum combination of strength, ductility, and corrosion resistance is obtained by solution treating the welded part before aging. If welded in the overaged condition, the part must be solution treated and then aged.

Other information

Descaling (cleaning)

Descaling following forging and annealing can be accomplished by acid cleaning or grit blasting. The acid treatment consists of 2 minutes in 50% by volume muriatic acid at $180^{\circ}F$ ($82^{\circ}C$), followed by 4 minutes in a mixture 15% by volume nitric acid, plus 3% by volume hydrofluoric acid at room temperature. Water rinse and desmut in 20% by volume nitric acid at room temperature. Repeat cleaning procedure as necessary but decrease the times by 50% (i.e., 1 and 2 minutes, respectively).

The heat tint from aging can be removed by polishing, vapor blasting, or pickling 4 to 6 minutes in a mixture of 15% by volume nitric acid, plus 3% by volume hydrofluoric acid, followed by a water rinse. Repeat the acid cleaning procedure if necessary, but decrease the time by 2 to 3 minutes. Desmut in 20% by volume nitric acid at room temperature.

After acid cleaning, back 1 to 3 hours at 300/350°F (149/177°C) to remove hydrogen.

High temperature exposure

Custom 630 Project 70+ shows excellent resistance to oxidation up to approximately 1100°F (539°C).

Long-term exposure to elevated temperatures can result in reduced toughness in precipitation hardenable stainless steels. The reduction in toughness can be minimized in some cases by using higher aging temperatures. Short exposures to elevated temperatures can be considered, provided the maximum temperature is at least 50° F (28° C) less than the aging temperature.

For additional information, please contact your nearest sales office:

info@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make their own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings LLC, a subsidiary of Carpenter Technology Corporation.