

CarTech[®] A-286 Alloy

	Identification					
UNS Number						
• S66286						
AISI Number						
• No. 660						
DIN Number						
• 1 4980						

Type Analysis							
Single figures are nominal except where noted.							
Carbon (Maximum)	0.08 %	Manganese (Maximum)	2.00 %				
Silicon (Maximum)	1.00 %	Chromium	13.50 to 16.00 %				
Nickel	24.00 to 27.00 %	Molybdenum	1.00 to 1.50 %				
Titanium	1.90 to 2.30 %	Aluminum (Maximum)	0.35 %				
Vanadium	0.10 to 0.50 %	Boron	0.003 to 0.010 %				
Iron	Balance						

Analysia

General Information

Description

CarTech A-286 alloy is designed for applications requiring high strength and good corrosion resistance at temperatures up to 1300°F (704°C).

This alloy offers high ductility in notched sections. In fact, the notched rupture strength of CarTech A-286 is superior to many other commercial alloys with comparable high temperature properties.

An advantage of this alloy is that it can be precipitation hardened and strengthened by heat treatment. This makes possible a high degree of uniformity in developing maximum strength, which can be duplicated application after application.

Applications

CarTech A-286 alloy has been used in jet engines, superchargers and various high temperature applications such as turbine wheels and blades, frames, casings, afterburner parts and fasteners.

Corrosion Resistance

The corrosion resistance of this alloy is excellent up to 1300°F (704°C) against many atmospheres encountered in jet engine service. Up to 1500°F (816°C), the oxidation resistance of Pyromet alloy A-286 is similar to that of Type 310 stainless.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Moderate
Phosphoric Acid	Moderate	Acetic Acid	Good
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Good
Sea Water	Moderate	Sour Oil/Gas	Moderate
Humidity	Excellent		

	Properties
Physical Properties	
Density	0.2860 lb/in ³

CarTech® A-286 Alloy

Mean Specific Heat (104 to 1299°F)	0.1100 Btu/lb/°F
Mean CTE	
200°F	9.17 x 10 ₅ in/in/°F
400°F	9.35 x 10 ₅ in/in/°F
600°F	9.47 x 10 -6 in/in/°F
800°F	9.64 x 10 -₀ in/in/°F
1000°F	9.78 x 10 ⋅ in/in/°F
1200°F	9.88 x 10 ⁻⁶ in/in/°F
1300°F	9.94 x 10 ₅ in/in/°F
1400°F	10.3 x 10 ₅ in/in/°F

Mean coefficient of thermal expansion

Tempe	rature	Coeff	licient
۴F	°C 10*/°F		10"/°C
200	93	9.17	16.5
400	204	9.35	16.8
600	316	9.47	17.0
800	427	9.64	17.4
1000	538	9.78	17.6
1200	649	9.88	17.8
1300	704	9.94	17.9
1400	760	10.32	18.6

Thermal Conductivity

104.2 BTU-in/hr/ft²/°F
165.0 BTU-in/hr/ft²/°F
28.8 x 10 ∘ ksi
23.7 x 10 ³ ksi
22.8 x 10 ³ ksi
21.9 x 10 ³ ksi
21.1 x 10 ³ ksi
20.1 x 10 ³ ksi
18.7 x 10 ³ ksi

Modulus of elasticity

Te	emperature				
°F	°C	psix 104	MPa x 10 ³		
70	21.1	28.8	199		
1000	538	23.7	163		
1100	593	22.8	157		
1200	649	21.9	151		
1300	704	21.1	145		
1400	760	20.1	139		
1500	816	18.7	129		

Electrical Resistivity

87°F	545.0 ohm-cir-mil/ft
1000°F	692.0 ohm-cir-mil/ft
1200°F	712.0 ohm-cir-mil/ft
1350°F	719.0 ohm-cir-mil/ft
1500°F	732.0 ohm-cir-mil/ft
Melting Range	2500 to 2600 °F

Magnetic Properties

Magnetic Permeability Solution Treated 1.0100 Mu	
Solution Treated 1 0100 Mu	
Solution Treated and Aged 1.0070 Mu	

Typical Mechanical Properties

Creep Strength—Pyromet Alloy A-286

-			Stress for Creep of							
Te Tempe		0.5% 100 H		1.0% 100 H		0.5%	% in Hours		% in Hours	
۴F	°C	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa	
1000 1100 1200 1300	538 593 649 704	81 76 53 30	558 524 365 207	92 80 60 35.5	634 552 414 245	78 68 35	538 469 241	85 70 41	586 483 283	

Stress Rupture Properties—Pyromet Alloy A-286

Solution treated 1800 °F (982 °C), 1 hour, oil quenched, aged 1325 °F (718 °C), 16 hours, air cooled

Te	st	Stress for Rupture			Stress for Rupture Stress for Rupture		
Tempe		100 H	lours	% 1000 Hot		Hours	%
۴F	°C	ksi	MPa	Elongation in 4D	ksi	MPa	Elongation in 4D
1000	538	99	683	3.0	88	607	3.0
1100	593	81.5	562	3.0	71.5	493	3.0
1200	649	61*	421	5.0	46***	317	8.5
1300	704	44.5	307	12.0	29	200	30.0
1350	732	35**	241	29.0	21	145	35.0
1500	816	13	90	55.0	7.7	53	_

Note: Comparative values for 1650°F (899°C), 1 hour, oil quenched and 1325°F (718°C), 16 hours, air cooled

- *53 ksi
- **32 ksi

***39 ksi

Tensile Properties—Pyromet Alloy A-286

Tests on 7/8" (22.2 mm) diameter bar stock solution treated to 1800 °F (982 °C), 1 hour, oil quenched, aged 1325 °F (719 °C), 16 hours, air cooled

			0.02% Offset Yield Strength		0.2% Offset Yield Strength		nsile Ingth	% Elongation in 2"	% Reduction	
۴F	°C	ksi	MPa	ksi	MPa	ksi	MPa	(50.8 mm)	of Area	
70	21.1	90	621	95	655	145	1000	24.0	45.0	
400	204	76	524	93.5	645	143	986	21.5	52.0	
800	427	72	496	93	641	138	951	18.5	35.0	
1000	538	62	427	87.5	603	131	903	18.5	31.0	
1100	593	64.5	445	90	621	122	841	21.0	23.0	
1200	649	62.5	431	88	607	103.5	714	13.0	14.5	
1300	704	68.5	472	86	593	86.5	596	11.0	10.0	
1400	760	44.5	307	62	427	64	441	18.5	23.0	
1500	816	31	214	33	228	36.5	252	68.5	37.5	

Note: Approximately 10 ksi higher strength and increased elongation may be obtained with 1650°F (899°C) solution treatment and 1325°F (718°C) age

Typical Values Hot Hardness Data—Pyromet Alloy A-286

Test Temperature		Rockwell C Hardness		mate Strength	0.2% Yield Strength		
۰F	*C	naioness	ksi	MPa	ksi	MPa	
Room Te	mperature	30/35	155	1069	100	689	
1000	538	32/33	131	903	87	600	
1100	593	29/30	122	841	90	621	
1200	649	28/29	103	710	88	607	
1300	704	26/27	86	593	86	593	
1400	760	18/20	64	441	62	427	
1500	816	10/15	36	248	33	228	

V-Notch Charpy Impact Strength—Pyromet Alloy A-286

Test Ten	perature	ft-lb			
۴F	°C	100			
-310	-190	57.0	77.3		
-100	-73	68.0	92.2		
70	21.1	64.0	86.8		
400	204	59.0	80.0		
800	427	51.5	69.8		
1000	538	45.5	61.7		
1100	593	44.0	59.7		
1200	649	35.0	47.5		
1300	704	44.0	59.7		

Heat Treatment

Solution Treatment

Two methods of heat treatment are suggested for this alloy:

1. Heat to 1800°F (982°C), hold 1 hour at heat, then cool rapidly.

2. Heat to 1650°F (899°C), hold 2 hours at heat, then cool rapidly.

The first solution treatment method results in increased rupture strength after aging, while the second results in better ductility and higher hardness.

Age

Heat to 1300/1400°F (704/760°C), hold 12 to 16 hours at heat, then air cool. Hardness is approximately 300 BHN.

A two cycle precipitation hardening treatment is occasionally specified after solution treatment at 1650°F (899°C). This treatment of 1300/1400°F (704/760°C), hold at heat for 16 hours, then air cool plus 1200°F (649°C), hold at heat for 8 to 12 hours, then air cool is intended to improve notch rupture strength while gaining the ductility and hardness advantages of a 1650°F (899°C) solution treatment.

Size Change Upon Aging - Contraction 0.001 in/in.

Workability

Hot Working

Pyromet alloy A-286 is rolled or forged from temperatures of 1900/2050°F (1038/1121°C) using a short soaking period. It is slightly more resistant to deformation than the austenitic stainless steels during hot working. Do not forge below 1700°F (927°C).

Cold Working

In the solution treated condition, Pyromet alloy A-286 can be satisfactorily cold drawn and formed. It is somewhat stiffer than stainless steels such as Types 316 and 310, and it work hardens rapidly.

Machinability

In general, the high temperature alloys are more difficult to machine than stainless steels. However, the iron-base alloy group, of which Pyromet alloy A-286 is a member, is easier to machine than the nickel-base precipitation-hardening grades such as Pyromet alloy 718 or cobalt-bearing grades such as Pyromet alloy 41. Carbide insert tools are commonly used where possible.

Following are typical feeds and speeds for Pyromet Alloy A-286.

Turning-Single Point and Box Tools

and a stand of the second s		Hig	h Speed To	ools	Carbide Tools				
Condition	Depth		Feed, ipr	Tool Mtl.	Speed	i, fpm		Tool Mtl.	
	Cut, In.	Speed, tpm			Brazed	Throw Away	Feed, ipr		
	.100	35	.015		135	160	.015	C-2	
Solution Treated	.025	40	.007	M-42	160	190	.007	C-3	
Acad	.100	30	.010	1	120	140	.010	C-2	
Aged	.025	35	.007	1	140	165	.007	C-3	

Turning-Cut-Off and Form Tools

Condition	50.00	Feed, ipr								
	Speed, fpm	Cut-Off Tool Width, Inches				Tool Mtl.				
		1/16	1/8	1/4	1/2	1	1-1/2	2		
	25	.002	.004	.005	.003	.002	.002	.001	M-42	
Solution Treated	95	.003	.005	.007	.004	.003	.003	.002	C-2	
Acad	20	.002	.004	.005	.003	.002	.002	.001	M-42	
Aged	80	.003	.005	.007	.004	.003	.002	.0015	C-2	

Drilling

Condition			Feed, lpr							Tool
	Speed, fpm	1222	Nominal Hole Diameter, Inches							
		1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	Mtl.
Solution Treated	25	_	.002	.004	.006	.008	.010	-	-	M-42
Aged	20	_	.002	.004	.006	.008	.008	-	-	141.42

Reaming

Condition	High Speed Tools									Tools
	Speed,		Feed, Inches per Rev.					Tool	Speed,	Tool
	fpm	200	Reamer Diameter, Inches						fpm	Mtl.
		1/8	1/4	1/2	1	1-1/2	2			
Solution Treated	30	.003	.006	.010	.012	.014	.016	M-42	100	C-2
Aged	25	.003	.006	.010	.012	.014	.016	M-42	80	6-2

CarTech® A-286 Alloy

Die Threading

	0.000				
Condition	7 or Less	8 to 15	16 to 24	25 and up T.P.I.	Tool Mtl.
Annealed	4-6	5-8	6-10	8-12	M-2; M-7; M-10
Aged	3-4	3-5	4-8	5-10	M-42

Tapping

Condition	Speed, fpm	Tool Mtl.
Solution Treated	10	M-1; M-7; M-10
Aged	7	M-1; M-7; M-10; Nitrided

Milling-End-Peripheral

and a second		High Speed Tools						Carbide Tools					
Condition	Depth	Speed.	Feed-Inches per Tooth			Tool	Speed	Feed-Inches per Tooth				Tool Mtl.	
	Cut,In.	fpm	Cutte	Cutter Diameter, Inches				fpm	Cutter Diameter, Inches				
			1/4	1/2	3/4	1.2			1/4	1/2	3/4	1-2	
Solution Treated	.050	30	.002	.002	.003	.004	M-42	120	.001	.002	.003	.004	C-2
Aged	1.550	20	.002	.002	.003	.004	1.42	80	.001	.002	.003	.004	

Broaching

Condition	Speed, fpm	Chip Load, Inches per Tooth	Tool Mtl.
Solution Treated	12	.002	M-42
Aged	10	.002	

Figures used for all metal removal operations are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small increments.

Additional Machinability Notes

Figures used for all metal removal operations are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small increments.

Weldability

Pyromet alloy A-286 is prone to heat affected zone cracking when welded with any of the fusion processes. If welding is absolutely necessary, consideration should be given to using JBK-75 alloy instead of Pyromet A-286 for the components to be welded.

Other Information

Applicable Specifications

Bars and Forgings-			
AMS 5731			
AMS 5732			
AMS 5734			
AMS 5735			
AMS 5736			
AMS 5737			
ASTM A 638			
PWA 1029			
GE B50T1181			
GE B50T81			
GE C50TF78			
GE C50TF27			
GE C50TF20			

• Wire		
• Billet	Strip	
• Bar-Rounds	• Bar-Shapes	
• Bar-Flats	 Bar-Hexagons 	
Forms Manufactured		
• MR0175		
• ASTM A453	• ASTM A638	
• AMS 5737	• AMS 5895	
• AMS 5735	• AMS 5736	
• AMS 5732	• AMS 5734	
• AMS 5525 (Strip)	• AMS 5731	
AMS 5525		
Strip-		

Technical Articles

- · A Designer's Manual On Specialty Alloys For Critical Automotive Components
- A Guide to Etching Specialty Alloys for Microstructural Evaluation
- Alloy Selection for Cold Forming (Part I)
- Alloy Selection for Cold Forming (Part II)
- Carpenter 286-LNi Alloy A Lower Cost Option for High Temperature Auto and Truck Fasteners
- · How to Select the Right Stainless Steel or High Temperature Alloy for Heading
- Machining Stainless Steel Ideas for Improving Machinability, Productivity and Profitability
- New Engineering University Research Study Simplifies Selection of Coatings for Cold Heading
- New Stainless for Fasteners Combines Corrosion Resistance, High Hardness and Cold Formability
- Selecting High Temperature Alloys for Fasteners in Automotive Exhaust Systems
- Selection of Age-Hardenable Superalloys

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 08/01/1994