

CarTech[®] Alloy 925

Identification

UNS Number

• N09925

Type Analysis						
Single figures are nominal e	except where noted.					
Carbon (Maximum)	0.03 %	Manganese (Maximum)	1.00 %			
Sulfur (Maximum)	0.030 %	Silicon (Maximum)	0.50 %			
Chromium	19.50 to 23.50 %	Nickel	38.00 to 46.00 %			
Molybdenum	2.50 to 3.50 %	Copper	1.50 to 3.00 %			
Titanium	1.90 to 2.40 %	Columbium/Niobium (Maximum)	0.50 %			
Aluminum	0.10 to 0.50 %	Iron (Minimum)	22.00 %			

General Information

Description

CarTech Alloy 925 is an age-hardenable Ni-Fe-Cr alloy designed to resist corrosion while providing high strength. A combination of copper, titanium, molybdenum, and aluminum, in conjunction with nickel, provides excellent resistance to stress-corrosion cracking, pitting and crevice corrosion, and oxidizing and reducing environments.

Applications

The excellent corrosion resistance of CarTech Alloy 925 makes it a good candidate where high strength and corrosion resistance is desired. Applications that may be considered include down-hole and surface gas well components, shafting products, and fasteners.

Corrosion Resistance

Carpenter Alloy 925 exhibits a high resistance to all forms of corrosion in both oxidizing and reducing environments. The alloy has been particularly useful in "sour" gas wells at both high temperatures and high pressures where it resists environmental cracking in a solution of 5% NaCl plus 0.5% acetic acid saturated with H2S.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Good
Phosphoric Acid	Good	Acetic Acid	Good
Sodium Hydroxide	Good	Salt Spray (NaCl)	Excellent
Sea Water	Moderate	Sour Oil/Gas	Good
Humidity	Excellent		

Properties

Physical Properties

Density

0.2920 lb/in3

Mean Specific Heat	
70°F	0.1040 Btu/lb/°F
200°F	0.1090 Btu/lb/°F
400°F	0.1160 Btu/lb/°F
600°F	0.1220 Btu/lb/°F
800°F	0.1290 Btu/lb/°F
1000°F	0.1360 Btu/lb/°F
1200°F	0.1430 Btu/lb/°F
1400°F	0.1500 Btu/lb/°F
1600°F	0.1570 Btu/lb/°F

Mean Specific Heat

Temperature	Btu/lb/°F	kJ/Kg/K
70°F / 20°C	0.104	.435
200°F/100°C	0.109	.456
400°F / 200°C	0.116	.486
600°F/300°C	0.122	.507
800°F / 400°C	0.129	.532
1000°F/500°C	0.136	.561
1200°F/600°C	0.143	.586
1400°F/700°C	0.150	.611
1600°F/800°C	0.157	.641

Mean CTE

77 to 200°F	7.80 x 10 -6 in/in/°F
77 to 400°F	8.10 x 10 -6 in/in/°F
77 to 600°F	8.40 x 10 -6 in/in/°F
77 to 800°F	8.50 x 10 -₀ in/in/°F
77 to 1000°F	8.70 x 10 -₀ in/in/°F
77 to 1200°F	9.00 x 10 -6 in/in/°F
77 to 1400°F	9.50 x 10 ⊸ in/in/°F

Mean Coefficient of Thermal Expansion

Temperature 77°F / 25°C to	10 ^{.6} in/in/ºF	10 ⁻⁶ cm/cm/°C
200°F/93°C	7.8	13.2
400°F / 200°C	8.1	14.2
600°F/320°C	8.4	14.7
800°F/430°C	8.5	15.0
1000°F/540°C	8.7	15.3
1200°F/650°C	9.0	15.7
1400°F/760°C	9.5	16.3
1600°F/870°C		17.2

Thermal Conductivity	
73°F	83.10 BTU-in/hr/ft²/°F
212°F	89.20 BTU-in/hr/ft²/°F
392°F	99.20 BTU-in/hr/ft²/°F
572°F	110.0 BTU-in/hr/ft²/°F
752°F	120.9 BTU-in/hr/ft²/°F
932°F	133.8 BTU-in/hr/ft²/°F
1112°F	153.7 BTU-in/hr/ft²/°F
1292°F	166.7 BTU-in/hr/ft²/°F
1472°F	195.8 BTU-in/hr/ft²/°F
1652°F	192.3 BTU-in/hr/ft²/°F
1832°F	170.7 BTU-in/hr/ft²/°F
2012°F	180.2 BTU-in/hr/ft²/°F

Thermal Conductivity

Temperature	BTU-in/hr/ft²/°F	W/m/K
73°F/23°C	83.1	12.0
212°F/100°C	89.2	12.9
392°F / 200°C	99.2	14.3
572°F/300°C	110.0	15.9
752°F/400°C	120.9	17.4
932°F / 500°C	133.8	19.3
1110°F/600°C	153.7	22.2
1290°F/700°C	166.7	24.0
1470°F/800°C	195.8	28.2
1650°F/900°C	192.3	27.7
1830°F/1000°C	170.7	24.6
2010°F/1100°C	180.2	26.0

Poisson's Ratio	0.293	
Modulus of Elasticity (E) (70°F)	28.9	x 10 ^s ksi
Electrical Resistivity	701.0	ohm-cir-mil/ft
Melting Range	2390 to 2490	°F

Typical Mechanical Properties

Charpy V-Notch Impact Strength – Carpenter Alloy 925 Solution treated and aged condition

Orientation	Test Temperature	Impact Strength	
ononidation		ft•lbs	Joules
Longitudinal	-75°F / -60°C	73	99

Note: Orientation is L-R

Elevated Temperature Tensile Properties - Carpenter 925 Alloy

Test Temperature		0.: Yield S	2% trength	Ultimate Tensile Strength		% Elongation In 4D	% Reduction Of Area
°F	°C	Ksi	MPa	ksi	MPa		
75	24	119	822	169	1167	28	45
300	149	110	757	158	1090	25	43
350	177	109	754	157	1079	26	45
450	232	109	752	153	1058	24	43

Tensile Strength – Carpenter Alloy 925

Solution treated and aged condition

0.2% Yield Strength		Ultimate Tensil Strength		% Elongation	% Reduction	Rockwell C
ksi	MPa	ksi	MPa	in 4D	of Area	Hardness
120	827	168	1158	27	44	33

Heat Treatment

Carpenter Alloy 925 may be supplied as bar in the solution annealed condition, solution annealed + aged condition, or as unannealed billet. The material is solution treated in the range 1800-1900°F for 30 minutes to 4 hours, then water quenched. The material is aged at 1365°F for eight hours then furnace cooled to 1150°F for six hours and air cooled.

Workability

Hot Working

Carpenter Alloy 925 may be hot worked using furnace temperatures from 1600-2150°F. Hot working should be performed in the 1600-1800°F range for maximum strength and corrosion resistance.

Machinability

Carpenter Alloy 925 has good machinability in both the solution treated and aged condition. Tools and techniques that minimize work hardening should be used. Rough machining between the solution treatment and aging treatment provides the best finished part results.

Weldability

Carpenter Alloy 925 should be welded using gas-tungsten-arc welding (GTAW) with matching composition filler material.

Other Information

Applicable Specifications

Carpenter Alloy 925 has been approved to NACE MR0175.

• NACE MR0175

Forms Manufactured

Bar-Rounds

Hollow Bar

Billet

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved. Visit us on the web at www.cartech.com

Edition Date: 3/25/10