

CarTech[®] 901 Alloy

Identification				
UNS Number				
• N09901				
AISI Number				
• 681 and 682				
DIN Number				
• 2.4662				

	iybe	Analysis	
Single figures are nominal exce	pt where noted.		
Carbon (Maximum)	0.10 %	Manganese (Maximum)	1.00 %
Silicon (Maximum)	0.60 %	Chromium	11.00 to 14.00 %
Nickel	40.00 to 45.00 %	Molybdenum	5.00 to 7.00 %
Copper (Maximum)	0.50 %	Titanium	2.35 to 3.10 %
Aluminum (Maximum)	0.35 %	Boron	0.010 to 0.020 %
Iron	Balance		

Type Analysis

General Information

Description

CarTech 901 alloy is a chromium nickel-iron base superalloy designed for high strength and corrosion resistance in the temperature range of 1000/1400°F (538/760°C). It is hardened by the precipitation of nickel, titanium and aluminum compounds of the Ni3 (AI, Ti) type.

Applications

CarTech 901 alloy has been used for components in aircraft and gas turbines, such as turbine rotors, compressor discs, hubs, and shafts.

Corrosion Resistance

Pyromet alloy 901 has good corrosion resistance to the atmospheres normally found in jet engine operations. It has slightly lower scaling resistance than such alloys as AISI Types 309 and 310 stainless steels.

Properties

Physical Properties	
Density	0.2970 lb/in ³
Mean CTE	
80 to 200°F	7.75 x 10 ∘ in/in/°F
80 to 400°F	7.85 x 10 ₅ in/in/°F
80 to 600°F	8.02 x 10 ^₅ in/in/°F
80 to 800°F	8.27 x 10 ₅ in/in/°F
80 to 1000°F	8.50 x 10 ₅ in/in/°F
80 to 1200°F	8.79 x 10 ₅ in/in/°F
80 to 1400°F	9.15 x 10 ₅ in/in/°F
80 to 1500°F	9.43 x 10 ⋅ in/in/°F

Mean coefficient of thermal expansion

Temp	erature	Coeff	icient	
80°F to	26.7 °C to	10- [∉] /°F	10-6/°C	
200	93	7.75	13.9	
400	204	7.85	14.1	
600	316	8.02	14.4	
800	427	8.27	14.9	
1000	538	8.50	15.3	
1200	649	8.79	15.8	
1400	760	9.15	16.5	
1500	816	9.43	17.0	

Thermal Conductivity

109°F	93.00 BTU-in/hr/ft²/°F
333°F	99.00 BTU-in/hr/ft²/°F
476°F	107.0 BTU-in/hr/ft²/°F
680°F	113.0 BTU-in/hr/ft²/°F
855°F	122.0 BTU-in/hr/ft²/°F
1000°F	127.0 BTU-in/hr/ft²/°F
1200°F	134.0 BTU-in/hr/ft²/°F
1400°F	142.0 BTU-in/hr/ft²/°F

Thermal conductivity

Temp	erature	Dtu in/ft? + br + °E)	W/m • K
*F	"C	Btu-in/ft ² • hr • °F)	W/III * K
109.4	43	93	13.4
333	167	99	14.3
476	246	107	15.4
680	360	113	16.3
855	457	122	17.6
1000	538	127	18.3
1200	649	134	19.3
1400	760	142	20.5

Modulus of Elasticity (E)

75°F	29.9 x 10 ³ ksi
400°F	28.5 x 10 ₃ ksi
600°F	26.5 x 10 ₃ ksi
800°F	25.9 x 10 ³ ksi
1000°F	24.2 x 10 ³ ksi
1200°F	22.1 x 10 ³ ksi

Modulus of elasticity

Temp	erature	psi x 10 ⁶	MPa x 10 ³	
۴F	°C	permite		
75	23.9	29.9	206	
400	204	28.5	197	
600	316	26.5	183	
800	427	25.9	179	
1000	538	24.2	167	
1200	649	22.1	152	

Melting Range

2250 to 2580 °F

Magnetic Properties

Magnetic Permeability (200 Oe)

1.0080 Mu

Typical Mechanical Properties

Creep Strength—Pyromet Alloy 901

Solution Treated: 2000°F (1093°C), 2 hours, water quenched. Stabilized: 1425°F (774°C), 4 hours, air cooled. Aged: 1350°F (732°C), 24 hours, air cooled.

	est erature		o Produce o in 100 Hrs.
°F	°C	ksi	MPa
1000	538	105	724
1200	649	73	503
1400	760	27	186

Stress Rupture Strength—Pyromet Alloy 901

Solution Treated: 2000°F (1093°C), 2 hours, water quenched. Stabilized: 1425°F (774°C), 4 hours, air cooled. Aged: 1350°F (732°C), 24 hours, air cooled.

est		St	e in			
erature	10 H	ours	100 H	lours	1000	Hours
۳C	ksi	MPa	ksi	MPa	ksi	MPa
538	-	-	120	827	100	689
649	96.5	665	90	621	75	517
732	60	414	51	352	33	228
816	35	241	22.5	155	11	76
	538 649 732	"C ksi 538 - 649 96.5 732 60	*C ksi MPa 538 - - 649 96.5 665 732 60 414	*C ksi MPa ksi 538 - - 120 649 96.5 665 90 732 60 414 51	Image: Protect of the system <th< td=""><td>Image: system Image: system Image:</td></th<>	Image: system Image:

Typical Tensile Properties—Pyromet Alloy 901

Solution Treated: 2000°F (1093°C), 2 hours, water quenched. Stabilized: 1425°F (774°C), 4 hours, air cooled. Aged: 1350°F (732°C), 24 hours, air cooled.

Test Temperature		0.2% Offset Yield Strength		Ultimate Tensile Strength				% Elongation	% Reduction
°F	°C	ksi	MPa	ksi	MPa	in 2" (50.8 mm)	of Area		
70	21.1	125.0	862	175	1207	15.0	19.0		
800	427	116.5	803	159	1096	16.0	25.5		
1000	538	113	779	156	1076	17.0	29.0		
1200	649	117	807	150	1034	14.0	21.0		
1300	704	114	786	130	896	11.5	15.5		
1400	760	102.5	707	107.5	741	9.0	14.5		
1500	816	79	545	81	558	13.0	20.0		

Heat Treatment

Solution Treatment

1800/2025°F (982/1107°C), hold 2 hours at heat, and water quench.

Age

1300/1375°F (704/746°C), hold for 24 hours, and air cool.

Stabilizing

1400/1475°F (760/802°C), hold 2 to 4 hours, and air cool.

Workability

Hot Working

Pyromet alloy 901 is forged between 2050°F (1121°C) and 1850°F (1010°C). Light hot work may be continued down to 1600°F (871°C), but not below. Metal temperature should not exceed 2050°F (1121°C) during rapid working.

Billets should be charged into a hot furnace and heated rapidly through the precipitation hardening range.

CarTech® 901 Alloy

Machinability

Pyromet alloy 901 can be successfully machined in all heat treated conditions. Best machinability is provided by over aging. However, partial aging, as by air cooling from a solution treatment, may be satisfactory for most applications. Drilling and tapping may require the lowest possible hardness, i.e., water quenched from a solution treatment. For turning, high speed steel tool bits should be adequate, but cemented carbide tools may be more cost effective if the alloy is in the hardneed (fully aged) condition.

It is important that machine set-ups be as rigid as possible. Care must be exercised to obtain a positive cutting action at all times because "glazing" and work hardening of surfaces will hinder additional machining.

Weldability

Pyromet alloy 901 can be welded by the inert-gas-arc method. It is difficult to weld. All welding should be done in the solution treated condition. Cold worked parts should be re-solution treated before welding. A re-solution treatment is recommended after welding before stabilizing and aging.

Other Information

Applicable Specifications

• AMS 5661	
• Billet	
• Wire	
for Microstructural Evaluation	
ralloys	
	• Billet

• Trends in High Temperature Alloys

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 03/01/1988