

	Type Analysis										
Single figures are nominal except where noted.											
Carbon (Maximum)	0.08 %	Manganese (Maximum)	0.50 %								
Sulfur (Maximum)	0.005 %	Silicon (Maximum)	0.50 %								
Chromium	14.00 to 17.00 %	Nickel (Minimum)	70.00 %								
Titanium	2.10 to 2.70 %	Columbium/Niobium	0.70 to 1.20 %								
Aluminum	1.00 to 1.50 %	Iron	5.00 to 9.00 %								

General Information

Description

CarTech 751 alloy is a high strength, nickel-base high temperature alloy which responds to age hardening for maximum properties. This alloy is highly resistant to chemical corrosion and oxidation, displays low creep rate under high stresses in the 1200/1500°F (650/820°C) temperature range and possesses good rupture properties to 1600°F (870°C).

Applications

CarTech 751 alloy has been used for engine valves.

Corrosion Resistance

Pyromet alloy 751 exhibits high resistance to oxidation under conditions of repeated heating and cooling. This material forms a strong, closely adherent oxide which protects it from progressive attack.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Moderate
Phosphoric Acid	Moderate	Acetic Acid	Moderate
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Good
Sea Water	Restricted	Humidity	Excellent

Properties									
Physical Properties									
Specific Gravity	8.25								
Density	0.2980 lb/in ³								
Mean CTE									
100 to 200°F	7.20 x 10 ⋅ in/in/°F								
100 to 600°F	7.80 x 10 ∘ in/in/°F								
100 to 1000°F	8.30 x 10 ∘ in/in/°F								
100 to 1400°F	8.90 x 10 ⋅ in/in/°F								
100 to 1600°F	9.40 x 10 ∘ in/in/°F								

Mean coefficient of thermal expansion

Tempe	rature	Coefficient of Expansion				
100°F to	38°C to	10*/°F	10"/°C			
200	93	7.2	13.0			
600	320	7.8	14.0			
1000	540	8.3	14.9			
1400	760	8.9	16.0			
1600	870	9.4	16.9			

Modulus of Elasticity (E)	31.0	x 10 ³ ksi
Electrical Resistivity (76°F)	743.0	ohm-cir-mil/ft
Melting Range	2540 to 2600	°F

Typical Mechanical Properties

Elevated Temperature Stress Rupture Properties - Alloy 751

Test temperature - 1350°F (730°C)

Time (hours)	Stress Required to Produce Rupture					
Time (nours)	ksi	MPa				
10	63	434				
100	50	345				
1000	38	262				

Room Temperature Tensile Properties — Pyromet Alloy 751

Heat treated—2100°F (1150°C)/4 hr/air cool + 1550°F (840°C)/24 hr/cool to 1300°F (700°C)/hold 20 hr/air cool

Condition	Ultimate Tensile Strength		0.2% Yield Strength		% Elongation	Brinell
	ksi	MPa	ksi	MPa	in 4D	Hardness
Solution Treated	125	862	75	517	50	176
Solution Treated & Aged	175	1207	110	758	20	337

Heat Treatment

In some cases, valves are used as-forged, without further treatment.

Valves may be aged at 1300°F (700°C) after forging.

When a finer grain size is desired for improved tensile properties, at the expense of creep-rupture strength, lower solution heat treatments are used. These temperatures are in the range 1800/1950°F (980/1070°C). The standard aging treatments follow these solution treatments.

Solution Treatment

Heat to 2100°F (1150°C), hold at temperature for 4 hours, then air cool.

Age

Reheat to 1550°F (840°C), hold at temperature for 24 hours, cool to 1300°F (700°C), hold at temperature for 20 hours, then air cool.

Workability

Forging

Pyromet alloy 751 can be forged within the temperature range 1800/2100°F (980/1150°C). Careful control of the forging temperature and frictional heat buildup should be exercised as hot shortness can occur. Also, cold shortness will occur with too much deformation below 1800°F (980°C).

Long soaks are not necessary; an equalized temperature is adequate.

Forging furnace fuels should be low in sulfur content because this element can cause catastrophic oxidation.

Forgings may be air or fan cooled. Care should be exercised in water quenching as quench cracks may occur, especially in large sections.

Machinability

Pyromet alloy 751 is machinable in all conditions. It cannot be machined economically on light machine tools nor machined at the operating speeds for ordinary steel; its machinability is similar to that of annealed high-speed steels.

In general, material given only an intermediate age, 1525/1575°F (829/857°C), is not as readily machined as material given a double age, 1525/1575°F plus 1275/1325°F (829/857°C plus 690/718°C).

Following are typical feeds and speeds for Pyromet alloy 751.

Turning-Single-Point and Box Tools

		High	-Speed T	ools	Carbide				
	Depth	Cd	Fd	7	Speed	i, fpm			
Condition	Of Cut In.	Speed, fpm	Feed, ipr		Brazed	Throw Away	Feed, ipr	Tool Material	
Solution Treated	.100	20	.010		70	80	.010	C-2	
	.025	25	.007	M-42	80	90	.007	C-3	
Aged	.100	20	.010	M-47	65	75	.010	C-2	
	.025	25	.007		75	85	.007	C-3	

Turning-Cut-Off and Form Tools

Condition	Speed, fpm					Form Tool Width, Inches					
		1/16	1/8	1/4	1/2	1	1-1/2	2			
Solution Treated	15	.002	.004	.005	.004	.002	.002	.001	M-42		
	45	.003	.0045	.006	.004	.003	.0025	.0015	C-2		
Agod	15	.002	.003	.004	.003	.002	.002	.001	M-42		
Aged	45	.003	.003	.0045	.003	.0025	.002	.001	C-2		

Drilling

Condition			Feed, ipr							
	Speed, fpm		Nominal Hole Diameter, Inch							Tool Material
	'P'''	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	
Solution Treated	20	_	.002	.003	.003	.004	_	_	_	M-42
Aged	15	_	.002	.003	.003	.004	_	_	_	

Tapping

Condition	Speed, fpm	Tool Material
Solution Treated	10	M-1;M-7;M-10
Aged	7	M-1;M-7;M-10; Nitrided

Reaming

			Carbide Tool							
			Feed	i, Inch	es per					
	Speed, fpm	Reamer Diameter, Inches						Tool Material	Speed, fpm	Tool Material
	.,	1/8	1/4	1/2	1	1-1/2	2		.,	
Solution Treated	20	.002	.006	.008	.010	.012	.014	M-42	60	C-2
Aged	15	.002	.006	.008	.010	.012	.014		50] "

Die Threading

Condition						
	7 or Less	8 to 15	16 to 24	25 and up T.P.I.	Tool Material	
Solution Treated	4-6	5-8	6-10	8-12	M-2;M-7;M-10	
Aged	3-4	3-5	4-8	5-10	M-42	

Milling-End Peripheral

Condition	Depth of Cut In.	High-Speed Tools					Carbide Tools						
			Feed—Inches per tooth Cutter Diameter, Inches			Tool	Speed,	Feed—Inches per tooth Cutter Diameter, Inches			Tool Material		
		Speed, fpm											
			1/4	1/2	3/4	1-2	Material	fpm	1/4	1/2	3/4	1-2	material
Solution Treated	.050	15	.002	.002	.003	.004	M-42	60	.001	.002	.003	.004	C-2
Aged		12	.0015	0015	.002	.003		50	.0015	.0015	.002	.003	

Broaching

Condition	Speed, fpm	Chip Load, Inches per tooth	Tool Material		
Solution Treated	8	.002	M-42		
Aged	6	.002	111 -12		

Additional Machinability Notes

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds and feeds should be increased or decreased in small steps.

Other Information

Forms Manufactured

• Bar-Rounds • Billet

Technical Articles

- A Designer's Manual On Specialty Alloys For Critical Automotive Components
- Trends in High Temperature Alloys

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 03/04/09