

CarTech[®] 309 Stainless

Identification

UNS Number

• S30900

Type Analysis Single figures are nominal except where noted. Manganese (Maximum) Carbon (Maximum) 0.20 % 2.00 % Phosphorus (Maximum) 0.045 % Sulfur (Maximum) 0.030 % Silicon (Maximum) Chromium 1.00 % 22.00 to 24.00 % Nickel 12.00 to 15.00 % Iron Balance

General Information

Description

CarTech 309 stainless in an austenitic chromium-nickel modification of CarTech 304 stainless with superior heat-resisting characteristics. It offers slightly better corrosion resistance than Type 304 because of the higher percentages of both chromium and nickel. In addition, this alloy possesses better creep strength than the straight chrome grades. CarTech 309 stainless possesses resistance to oxidation up to 2000°F (1093°C) in continuous services. This alloy has been used for furnace parts, fire box sheets, high temperature containers, and weld wire.

Scaling

Carpenter Stainless Type 309 possesses excellent scaling resistance up to 2000°F (1093°C) if used in continuous service and up to about 1850°F (1010°C) where intermittent heating and cooling are encountered.

In gas carburizing and bright hardening or annealing atmospheres, the alloy has excellent resistance to corrosion or scaling. Its resistance to the corrosive action of high-sulfur flue gases is outstanding if the sulfur compounds are oxidizing, such as SO2, but poor if the sulfur compounds are reducing, such as H2S.

Corrosion Resistance

Because of the higher chromium and nickel contents, the corrosion resistance of these grades is slightly better than that of Stainless Type 304.

This alloy has better corrosion resistance than Type 304 in hot petroleum products. Type 309 also has higher resistance to sulphite liquors in paper and paper pulp mills and are useful for handling nitric acid, nitric-sulfuric acid mixtures, acetic, citric and lactic acids. For use in the temperature range of 800/1500°F (427/816°C), Type 309S should be considered for better corrosion resistance.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Moderate
Phosphoric Acid	Moderate	Acetic Acid	Moderate
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Good
Sea Water	Restricted	Sour Oil/Gas	Moderate
Humidity	Excellent		

Properties

7.95	
0.2870	lb/in³
0.1200	Btu/lb/°F
10.0	x 10 ₅ in/in/°F
29.0	x 10 ³ ksi
469.0	ohm-cir-mil/ft
	7.95 0.2870 0.1200 10.0 29.0 469.0

Typical Mechanical Properties

Typical Creep Strength Annealed condition

Te Tempe	est erature		Stress for 1% elongation in							
۴F	°C	10,00	0 hrs.	100,00	00 hrs.					
		ksi	MPa	ksi	MPa					
1000	538	16	110	_	_					
1100	593	12	83	7	48					
1200	649	7	48	5	34					
1300	704	5	34	3	21					
1400	760	2	14	2	14					
1500	816	1	7	-	-					

Typical Elevated Temperature Tensile Properties Annealed condition

Te Tempe	st rature	0.2 Yie Stre	:% eld ngth	Ultin Ten Strei	nate sile ngth	% Elongation in 2" (50.8 mm)	% Reduction of Area
۴F	°C	ksi	MPa	ksi	MPa	0	
70 300 400 500 600 700 800 900 1000 1100 1200 1300	21 149 204 260 316 371 427 482 538 593 649 704	42 37 35 30 28 27 25 24 23 22 21	290 255 241 221 207 193 186 172 166 159 152	90 81 80 77 75 74 72 69 66 59 55 44	621 558 552 531 517 510 496 476 455 407 379 303	50 47 46 45 44 43 40 39 36 35 35 37	77 75 75 73 72 67 66 58 54 50 41
1400 1500 1600 1700 1800	760 816 871 927 982	20 19 18 	138 131 124 —	36 27 21 15 11	248 186 145 103 76	40 46 50 59 65	40 37 48 47 66

Typical Room Temperature Mechanical Properties 1" (25.4 mm) round bar annealed 1950°F (1066°C), water quench

0.2 Yii Stre	2% eld ngth	Ultin Ter Stre	mate Isile ngth	% Elongation in 2" (50.8 mm)	% Reduction of Area	Ha	Hardness		Izod Impact Strength	
ksi	MPa	ksi	MPa			Brinell	Brinell Rockwell B		L	
40	276	90	620	50	77	160	83	110	149	

Typical Stress-Rupture Strength Annealed condition

Te Tempe	st rature		Stress for Rupture in						
°F	°C	1,00) hrs.	10,00	0 hrs.	100,0	000 hrs.		
		ksi	MPa	ksi	MPa	ksi	MPa		
1200	649	21	145	15	103	11	76		
1300	704	12	83	7	48	4	28		
1400	760	8	55	5	34	3	21		
1500	816	5	34	4	28	2	14		
1600	871	3	21	2	14	1	7		
1800	982	1	7	1	7	-	_		

Heat Treatment

Annealing

Heat to 1900/2050°F (1038/1121°C) and water quench. Brinell hardness approximately 160.

Hardening

Cannot be hardened by heat treatment. Hardens only by cold working.

Workability

Hot Working

Carpenter Stainless Type 309 can be forged, hot headed, and upset satisfactorily. Initial forging temperature should be about 2150°F (1177°C) and forging should not be done much below about 1800°F (982°C). Small forgings should be cooled rapidly in air, or water quenched from the hammer. Optimum corrosion resistance is obtained by annealing.

Cold Working

Carpenter Stainless Type 309 can be deep drawn, stamped, headed, and upset without difficulty. Since this steel work hardens, severe forming operations should be followed by an anneal.

Machinability

Carpenter Stainless Type 309 machines similarly to Stainless Type 304 with a tough, stringy chip. Increased feeds and lower speeds will usually be helpful. Carpenter Stainless Type 309 machines similarly to copper-nickel alloys, except that it work hardens. Machined surface finish can be somewhat improved by using moderately cold-drawn bars.

Following are typical feeds and speeds for Carpenter Stainless Types 309.

Typical Machining Speeds and Feeds – Carpenter Stainless Type 309

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Turning—Single-Point and Box Tools

Depth	L F	ligh Speed Tool	S	Carbide Tools (Inserts)				
of Cut	Tool			Tool	Speed	(fpm)	Feed	
(Inches)	Material	Speed (fpm)	Feed (ipr)	Material	Uncoated	Coated	(ipr)	
.150	T15	85	.015	C2	350	450	.015	
.025	M42	100	.007	C3	400	525	.007	

Turning-Cut-Off and Form Tools

Tool N	laterial		Feed (ipr)								
High	Car-	Speed	Cut-C	off Tool Wid	Tool Width (inches)			Form Tool Width (inches)			
Speed Tools	bide Tools	(fpm)	1/16	1/8	1/4	1/2	1	1 ½	2		
M2		75	.001	.0015	.002	.0015	.001	.001	.001		
	C2	275	.004	.0055	.007	.005	.004	.0035	.0035		

Rough Reaming

High S	Speed	Carbid	e Tools	Feed (ipr) Reamer Diameter (inches)					
Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1/8	1/4	1/2	1	1 ½	2
M7	70	C2	90	.003	.005	.008	.012	.015	018

Drilling

	High Speed Tools										
Tool	Speed	Feed (inches per revolution) Nominal Hole Diameter (inches)									
Material	(fpm)	1/16	1/8	1/4	1/2	3/4	1	1 ½	2		
M7, M10	50-60	.001	.002	.004	.007	.010	.012	.015	.018		

Die Threading

FPM for High Speed Tools										
Tool Material	7 or less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi						
M1, M2, M7, M10	8-15	10-20	15-25	25-30						

Milling, End-Peripheral

Depth	High Speed Tools					Carbide Tools						
of Cut	Tool	Speed	Feed (ipt) Cutter Diameter (in)			Tool	Speed	Feed	ipt) Cutte	er Diame	eter (in)	
(inches)	Material	(fpm)	1/4	1/2	3/4	1.2	Material	(fpm)	1/4	1/2	3/4	1.2
.050	M2, M7	75	.001	.002	.003	.004	C2	270	.001	.002	.003	.005

Tapping

Broaching

High Speed Tools		High Speed Tools		
Tool Material	Speed (tpm)	Tool Material	Speed (tpm)	Chip Load (ipt)
M1, M7, M10	12-25	M2, M7	15	.003

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (sfpm) can be increased between 2 and 3 times over the high speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Weldability

Carpenter Stainless Type 309 can be satisfactorily welded by the shielded fusion and resistance welding processes. Oxyacetylene welding is not recommended, since carbon pickup in the weld may occur. Since austenitic welds do not harden on air cooling, the welds should have good toughness. When a filler metal is required, AWS E/ER309 or E/ER309L welding consumables should be considered. Resistance to intergranular corrosion can be restored by a postweld annealing treatment.

Other Information

Applicable Specifications			
• ASME SA479	• ASTM A276		
• ASTM A314	• ASTM A479		
• ASTM A580	• QQ-S-763		
Forms Manufactured			
Bar-Rounds	• Billet		
• Strip	• Wire		
• Wire-Rod			
Technical Articles			
A Guide to Etching Specialty	Alloys for Microstructural Evaluation		

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Edition Date: 07/01/1986

Visit us on the web at www.cartech.com