

# CarTech<sup>®</sup> 305 Stainless

### Identification

**UNS Number** 

• S30500

#### **Type Analysis** Single figures are nominal except where noted. Carbon (Maximum) Manganese (Maximum) 0.12 % 2.00 % Phosphorus (Maximum) 0.045 % Sulfur (Maximum) 0.030 % Silicon (Maximum) Chromium 1.00 % 17.00 to 19.00 % Nickel 10.50 to 13.00 % Iron Balance

# **General Information**

#### Description

CarTech 305 stainless has been used for severe cold forming operations. The higher nickel content lowers the tendency to work-harden, so that a greater amount of deformation is possible before process annealing is necessary. Having the highest nickel content of the austenitic stainless steels considered to be in the 18-chromium 8-nickel family, CarTech 305 stainless has the lowest rate of strain hardening of these steels.

CarTech 305 stainless has also been used where the finished part must remain nonmagnetic after severe cold working.

CarTech 305 stainless has been used extensively for parts produced by deep drawing. This steel has worked well in automatic eyelet machines when the part was produced without process annealing. CarTech 305 stainless should be considered for cold headed bolts, screws, etc. Because of its nonmagnetic properties, CarTech 305 stainless should also be considered for use in electrical instrumentation.

#### Scaling

The safe scaling temperature for continuous service is 1600°F (871°C).

### **Corrosion Resistance**

Annealed Carpenter Stainless Type 305 is resistant to atmospheric corrosion, foodstuffs, sterilizing solutions, many organic chemicals and dyestuffs, and a wide variety of inorganic chemicals.

Intergranular corrosion may be a problem if the material is heated between 800°F (427°C) and 1650°F (899°C) or cooled slowly through that range.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

**Important Note:** The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

| Nitric Acid      | Good       | Sulfuric Acid     | Moderate |
|------------------|------------|-------------------|----------|
| Phosphoric Acid  | Moderate   | Acetic Acid       | Moderate |
| Sodium Hydroxide | Moderate   | Salt Spray (NaCl) | Good     |
| Sea Water        | Restricted | Sour Oil/Gas      | Moderate |
| Humidity         | Excellent  |                   |          |

# CarTech® 305 Stainless

# **Properties**

| Specific Gravity                 | 7.92                      |
|----------------------------------|---------------------------|
| Density                          | 0.2860 lb/in <sup>3</sup> |
| Mean Specific Heat (32 to 212°F) | 0.1200 Btu/lb/°F          |
| Mean CTE (32 to 1200°F)          | 10.5 x 10 ⋅ in/in/°F      |
| Electrical Resistivity (70°F)    | 455.0 ohm-cir-mil/ft      |

| Magnetic Permeability |           |
|-----------------------|-----------|
| 200 Oe, 25.000%       | 1.0070 Mu |
| 200 Oe, 41.000%       | 1.0200 Mu |
| 200 Oe, 52.000%       | 1.0480 Mu |
| 200 Oe, 61.000%       | 1.1010 Mu |
| 200 Oe, 69.000%       | 1.1860 Mu |
| 200 Oe, 75.000%       | 1.2820 Mu |
| Annealed, 200 Oe      | 1.0030 Mu |

### Magnetic Permeability at H = 200 Oersteds

| % Cold Reduction              | Permeability                     | % Cold Reduction | Permeability            |
|-------------------------------|----------------------------------|------------------|-------------------------|
| As annealed<br>25<br>41<br>52 | 1.003<br>1.007<br>1.020<br>1.048 | 61<br>69<br>75   | 1.101<br>1.186<br>1.282 |

Starting material: 0.250" round, annealed wire

#### **Typical Mechanical Properties**

# Typical Room Temperature and Cryogenic Mechanical Properties

Billet, annealed 1950°F (1066°C), water quench

|      | est<br>erature | Strength |     | Ultimate<br>Tensile<br>Strength |      | %<br>Elongation in<br>1" (25.4 mm)<br>or 4D | %<br>Reduction<br>of Area | Charpy<br>V-Notch<br>Impact<br>Strength |      |
|------|----------------|----------|-----|---------------------------------|------|---------------------------------------------|---------------------------|-----------------------------------------|------|
| °F   | °C             | ksi      | MPa | ksi                             | MPa  | 0140                                        |                           | ft-lb                                   | J    |
| 74   | 23             | 34       | 234 | 79                              | 545  | 77                                          | 82                        | 240*                                    | 325* |
| -100 | - 73           | 47       | 324 | 127                             | 876  | 82                                          | 79                        | 217                                     | 294  |
| -320 | -196           | 53       | 365 | 197                             | 1358 | 66                                          | 69                        | 175                                     | 237  |

\*Specimens did not fracture completely. Annealed hardness was Rockwell B 75.

# **Heat Treatment**

#### Annealing

Heat to 1850/2050°F (1010/1121°C) and quench in water. Brinell hardness approximately 156.

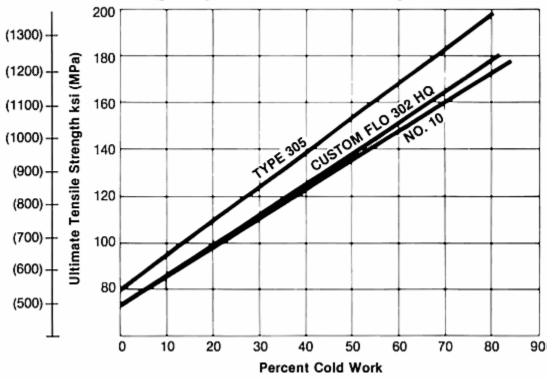
#### Hardening

Cannot be hardened by heat treatment. Hardens very slowly by cold working.

# Workability

#### Hot Working

This steel can be readily forged, hot headed, upset, and riveted. Heat uniformly to 2100/2300°F (1149/1260°C). Do not forge below 1700°F (927°C). Forgings can be air-cooled, but better corrosion resistance can be obtained if small forgings are water quenched from the hammer. Large pieces should be annealed.


#### Cold Working

Because of its slow rate of work hardening, Carpenter Stainless Type 305 lends itself very well to cold working operations, such as blanking, forming, deep drawing, heading and spinning.

### **Comparative Ultimate Tensile Strength**

| % Cold<br>Work | Carpenter<br>No. 10<br>Type 384 |      |     | enter<br>e 304 | Carpenter<br>Type 305 |      |  |
|----------------|---------------------------------|------|-----|----------------|-----------------------|------|--|
|                | ksi                             | MPa  | ksi | MPa            | ksi                   | MPa  |  |
| As annealed    | 75                              | 517  | 85  | 586            | 80                    | 552  |  |
| 10             | 84                              | 579  | 104 | 717            | 93                    | 641  |  |
| 20             | 98                              | 675  | 124 | 855            | 113                   | 779  |  |
| 40             | 130                             | 896  | 168 | 1158           | 150                   | 1034 |  |
| 60             | 156                             | 1076 | 200 | 1379           | 173                   | 1193 |  |
| 80             | 176                             | 1213 | 220 | 1517           | 190                   | 1310 |  |

## Rate of Work Hardening of Popular Austenitic Cold Heading Grades



Machinability

Carpenter Stainless Type 305 machines with a tough, stringy chip. To prevent glazing, keep the tools cutting. Increasing the feed and slowing the speed will be helpful. Machined surface finish can be somewhat improved by moderated cold working.

Following are typical feeds and speeds for Carpenter Stainless Type 305.

# Typical Machining Speeds and Feeds – Carpenter Stainless Type 305

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

#### Turning—Single-Point and Box Tools

| Depth    | ŀ        | ligh Speed Tool | s          | Carbide Tools (Inserts) |          |        |       |  |
|----------|----------|-----------------|------------|-------------------------|----------|--------|-------|--|
| of Cut   | Tool     |                 |            | Tool                    | (fpm)    | Feed   |       |  |
| (Inches) | Material | Speed (fpm)     | Feed (ipr) | Material                | Uncoated | Coated | (ipr) |  |
| .150     | T15      | 85              | .015       | C2                      | 350      | 450    | .015  |  |
| .025     | M42      | 100             | .007       | C3                      | 400      | 525    | .007  |  |

### Turning-Cut-Off and Form Tools

| [ | Tool M         | laterial      |       | Feed (ipr) |              |              |          |                          |       |       |  |
|---|----------------|---------------|-------|------------|--------------|--------------|----------|--------------------------|-------|-------|--|
| ſ | High           | Car-          | Speed | Cut-C      | off Tool Wid | Ith (inches) | Form Too | Form Tool Width (inches) |       |       |  |
|   | Speed<br>Tools | bide<br>Tools | (fpm) | 1/16       | 1/8          | 1/4          | 1/2      | 1                        | 1 ½   | 2     |  |
| ſ | M2             |               | 75    | .001       | .0015        | .002         | .0015    | .001                     | .001  | .001  |  |
| L |                | C2            | 275   | .004       | .0055        | .007         | .005     | .004                     | .0035 | .0035 |  |

#### Rough Reaming

| Hi          | High Speed Carbide Tools |                |                  |                |      |      |      |      |      |      |
|-------------|--------------------------|----------------|------------------|----------------|------|------|------|------|------|------|
| Too<br>Mate |                          | Speed<br>(fpm) | Tool<br>Material | Speed<br>(fpm) | 1/8  | 1/4  | 1/2  | 1    | 1½   | 2    |
| M7          | 7                        | 70             | C2               | 90             | .003 | .005 | .008 | .012 | .015 | .018 |

#### Drilling

|          | High Speed Tools |      |                                                             |      |      |      |      |      |      |  |  |  |  |
|----------|------------------|------|-------------------------------------------------------------|------|------|------|------|------|------|--|--|--|--|
| Tool     | Speed            |      | Feed (inches per revolution) Nominal Hole Diameter (inches) |      |      |      |      |      |      |  |  |  |  |
| Material | (fpm)            | 1/16 | 1/8                                                         | 1/4  | 1/2  | 3/4  | 1    | 1 ½  | 2    |  |  |  |  |
| M7, M10  | 50-60            | .001 | .002                                                        | .004 | .007 | .010 | .012 | .015 | .018 |  |  |  |  |

#### Die Threading

|                                                                        | FPM for High Speed Tools |       |       |       |  |  |  |  |  |  |  |
|------------------------------------------------------------------------|--------------------------|-------|-------|-------|--|--|--|--|--|--|--|
| Tool Material 7 or less, tpi 8 to 15, tpi 16 to 24, tpi 25 and up, tpi |                          |       |       |       |  |  |  |  |  |  |  |
| M1, M2, M7, M10                                                        | 8-15                     | 10-20 | 15-25 | 25-30 |  |  |  |  |  |  |  |

#### Milling, End-Peripheral

| Depth    | High Speed Tools |       |      |                                 |      | Carbide Tools |          |       |      |             |          |          |
|----------|------------------|-------|------|---------------------------------|------|---------------|----------|-------|------|-------------|----------|----------|
| of Cut   | Tool             | Speed | Feed | Feed (ipt) Cutter Diameter (in) |      |               | Teol     | Speed | Feed | (ipt) Cutte | er Diame | ter (in) |
| (inches) | Material         | (fpm) | 1/4  | 1/2                             | 3/4  | 1-2           | Material | (fpm) | 1/4  | 1/2         | 3/4      | 1-2      |
| .050     | M2, M7           | 75    | .001 | .002                            | .003 | .004          | C2       | 270   | .001 | .002        | .003     | .005     |

#### Tapping

| Broach | ina |
|--------|-----|
|        |     |

| High Speed Tools |             |               | High Speed Tools |                 |
|------------------|-------------|---------------|------------------|-----------------|
| Tool Material    | Speed (fpm) | Tool Material | Speed (fpm)      | Chip Load (ipt) |
| M1, M7, M10      | 12-25       | M2, M7        | 15               | .003            |

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

#### Additional Machinability Notes

When using carbide tools, surface speed feet/minute (sfpm) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

# CarTech® 305 Stainless

#### Weldability

Carpenter Stainless Type 305 can be satisfactorily welded by the shielded fusion and resistance welding processes. Oxyacetylene welding is not recommended, since carbon pickup in the weld may occur. Since austenitic welds do not harden on air cooling, the welds should have good toughness. When a filler metal is required, AWS E/ER308 welding consumables should be considered. Resistance to intergranular corrosion can be restored by a postweld annealing treatment.

| Other Information              |                                                    |  |  |  |  |
|--------------------------------|----------------------------------------------------|--|--|--|--|
| Applicable Specifications      | ;                                                  |  |  |  |  |
| • AMS 5685                     | • ASTM A193                                        |  |  |  |  |
| • ASTM A314                    | • ASTM A320                                        |  |  |  |  |
| • ASTM A473                    | • ASTM A580                                        |  |  |  |  |
| Forms Manufactured             |                                                    |  |  |  |  |
| • Bar-Rounds                   | • Billet                                           |  |  |  |  |
| Strip                          | • Wire                                             |  |  |  |  |
| Wire-Rod                       |                                                    |  |  |  |  |
| Technical Articles             |                                                    |  |  |  |  |
| A Designer's Manual On Spe     | ecialty Alloys For Critical Automotive Components  |  |  |  |  |
| Alloy Selection for Cold Forr  | ning (Part I)                                      |  |  |  |  |
| Alloy Selection for Cold Forr  | ning (Part II)                                     |  |  |  |  |
| How to Passivate Stainless     | Steel Parts                                        |  |  |  |  |
| · How to Select the Right Stai | inless Steel or High Temperature Alloy for Heading |  |  |  |  |
| · Passivating and Electropolis | hing Stainless Steel Parts                         |  |  |  |  |

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 04/01/1987