

CarTech® 25Ni-20Cr-6Mo Stainless

Identification

UNS Number

• N08925/N08926

Type Analysis Single figures are nominal except where noted. Carbon (Maximum) Manganese (Maximum) 0.02 % 2.00 % Phosphorus (Maximum) 0.045 % Sulfur (Maximum) 0.030 % Silicon (Maximum) Chromium 0.50 % 19.00 to 21.00 % Nickel 24.00 to 26.00 % Molybdenum 6.00 to 7.00 % Copper Nitrogen 0.50 to 1.50 % 0.10 to 0.25 % Iron Balance

General Information

Description

CarTech 25Ni-20Cr-6Mo stainless is a superaustenitic stainless steel designed to resist pitting and crevice corrosion in acidic or neutral chloride environments. This resistance is provided by the chromium, molybdenum and nitrogen, while nickel stabilizes the austenitic structure. Nickel, in combination with copper also provides resistance to some acid environments.

Applications

CarTech 25Ni-20Cr-6Mo stainless is a candidate for service in chloride environments, such as brackish water, seawater and bleach. It may also be considered for sour service and various pharmaceutical and chemical process industry applications.

Corrosion Resistance

25Ni-20Cr-6Mo Stainless may be considered for applications in mild/moderate sulfuric and phosphoric acid applications and especially in acidic environments containing chloride impurities. The combination of chromium, molybdenum, nitrogen and nickel are intended to provide resistance to pitting and crevice attack with resistance to stress-corrosion cracking in many environments.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Moderate
Phosphoric Acid	Good	Acetic Acid	Good
Sodium Hydroxide	Good	Salt Spray (NaCl)	Excellent
Sea Water	Excellent	Sour Oil/Gas	Good
Humidity	Excellent		

Properties

Physical Properties	
Specific Gravity	8.06
Density	0.2910 lb/in ³
Mean Specific Heat	0.1200 Btu/lb/°F
Mean CTE	
70 to 200°F	8.40 x 10 ⊸ in/in/°F
70 to 1200°F	9.40 x 10 ⊸ in/in/°F
Thermal Conductivity (68 to 212°F)	94.80 BTU-in/hr/ft²/°F
Modulus of Elasticity (E)	27.8 x 10 ³ ksi

CarTech® 25Ni-20Cr-6Mo Stainless

Electrical Resistivity

Magnetic Properties

Maximum Permeability

Typical Mechanical Properties

Typical Mechanical Properties-25Ni-20Cr-6Mo Stainless

0.2% Stre	Yield ngth	Ultimate Stre	: Tensile ngth	% Elongation
ksi	MPa	ksi	MPa	10 2
48	330	100	690	42

Heat Treatment

Annealing

25Ni-20Cr-6Mo cannot be hardened by heat treatment. It may be annealed at 2000°F to 2150°F (1095°C to 1175°C), with a range for bar and wire in ASTM B 649-02 of 2010°F to 2100°F (1100°C to 1150°C). A water quench is suggested (or rapid air cool for larger sections). Prolonged exposure to about 950°F to 1600°F (510°C to 870°C) can cause formation of deleterious phases/carbides, which can reduce corrosion resistance. Excessive time at the annealing temperature can cause increased oxidation.

Workability

Hot Working

Hot working is preferably conducted between 1800°F and 2100°F (980°C and 1150°C), but can be carried out up to 2250°F (1230°C). Annealing is suggested after hot working.

Cold Working

25Ni-20Cr-6Mo cold works well with a work hardening rate similar to or somewhat greater than that of Type 316 stainless steel. Machinability

The machinability of 25Ni-20Cr-6Mo stainless is generally similar to that of other nitrogen-strengthened austenitic stainless steels. It is suggested that work hardening be minimized, e.g. by using sharp, rigid tools having positive rake angles. Chip curlers or breakers may be helpful.

480.0 ohm-cir-mil/ft

1.01000

Typical Machining Speeds and Feeds – 25Ni-20Cr-6Mo Stainless

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Turning—Single-Point and Box Tools

Depth	Micro-Melt® P	owder High S	Speed Tools	Carbide Tools (Inserts)			
of Cut	Tool Material	Speed	Feed (ipr)	Tool	Speed	(fpm)	Feed
(Inches)	TOOLMATCHAL	(fpm)	r ceu (ipr)	Material	Uncoated	Coated	(ipr)
.150	M48, T15	66	.015	C6	250	300	.015
.025	M48, T15	84	.007	C7	300	350	.007

Turning-Cut-Off and Form Tools

Tool Materia	al		Feed (ipr)						
Micro-		 _		Cu	tt-Off and F	orm Tool V	/idth (Inche	is)	
Melt® Powder HS Tools	Carbide Tools	Speec (fpm)	1/16	1/8	1/4	1/2	1	1 1⁄2	2
M48, T15		48	.001	.001	.0015	.0015	.001	.0007	.0007
	C6	168	.004	.0055	.0045	.004	.003	.002	.002

Rough Reaming

Micro-Me Powder HS	elt® ; Tools	Carbide Tools			Re	Feed amer Diam	l (ipr) ieter (Inchi	es)	
Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1/8	1/4	1/2	1	1 ½	2
M48, T15	72	C2	80	.003	.005	.008	.012	.015	.018

Drilling

	High Speed Tools								
	Speed			Fee	d (inches	per revolut	ion)		
Tool	(form)		Nominal Hole Diameter (inches)						
Material	(ipin)	1/16	1/16 1/8 1/4 1/2 3/4 1 1 ½ 2						
M42	45-50	.001	.002	.004	.007	.010	.012	.015	.018
C2 Coated	150	.0005	.002	.004	.006	.0077	.0088	.0098	.0098

Die Threading

Tool Material		FPM for High	Speed Tools	
1001 Matchar	7 or less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi
T15, M42	4-8	6-10	8-12	10-15

Milling, End-Peripheral

·	Micro	Micro-Mett® Powder High Speed Tools Carbide Tools										
Ê.	E Tool BE		Tool 핥 글 Cutter Diameter (in)		n)	Tool	b) G	Feed (ipt) Cutter Diameter (in)				
C D C D	Mat'l	g g	1/4	1/2	3/4	1-2	Mat'l	g g	1/4	1/2	3/4	1-2
.050	M8,T15	78	.001	.002	.003	.004	C2	245	.001	.002	.003	.005

Tapping

Broaching	í.
Dioaching	

rapping		Droaching		
High Sp	eed Tools	Micro-Melt	B Powder High S	peed Tools
Tool Material	Speed (tpm)	Tool Material	Speed (tpm)	Chip Load (pp)
M7, M10	12-25	M48, T15	12	.0030

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

CarTech[®] 25Ni-20Cr-6Mo Stainless

Weldability

25Ni-20Cr-6Mo stainless can be welded using gas-metal-arc (GMAW), gas-tungsten-arc (GTAW) or other conventional welding techniques. For best corrosion resistance, an over-matched filler metal, such as 9% molybdenum Pyromet® Alloy 625 is suggested.

Passivation

25Ni-20Cr-6Mo may be passivated to remove finely-divided particles of free iron from shop dirt or from machining with tools and coolants used for carbon steel. Passivation similar to that used for Type 316 stainless is suggested, i.e. 20% by vol. nitric acid at 120/140°F (49/60°C) for 30 minutes followed by thorough rinsing and drying. Careful observation and evaluation of passivated parts is useful to confirm that the desired results are obtained.

Other Information

Applicable Specifications 25Ni-20Cr-6Mo stainless can be ordered to these ASTM specifications and the corresponding ASME SA and SB specifications: • ASTM A240 • ASTM A480 • ASTM B472 • ASTM B625 • ASTM B649

Forms Manufactured

• Bar	• Billet
• Strip	• Wire

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 12/15/06