

CarTech[®] Duplex 2507 Stainless

Identification UNS Number • S32750 DIN Number • 1.4410

Type Analysis									
Single figures are nominal except where noted.									
Carbon (Maximum)	0.03 %	Manganese (Maximum)	1.20 %						
Phosphorus (Maximum)	0.035 %	Sulfur (Maximum)	0.020 %						
Silicon (Maximum)	0.80 %	Chromium	25.00 %						
Nickel	7.00 %	Molybdenum	4.00 %						
Nitrogen	0.28 %	Iron	Balance						

General Information

Description

CarTech Duplex 2507 stainless is a duplex stainless steel with a microstructure consisting of austenite and ferrite phases in approximately equal amounts. The chemical composition and microstructure of CarTech Duplex 2507 stainless impart a good combination of strength, corrosion resistance and toughness.

The yield strength of annealed CarTech Duplex 2507 stainless is twice that of typical austenitic stainless steels possessing comparable impact strength. CarTech Duplex 2507 stainless exhibits good resistance to general corrosion in many acid environments with exceptional resistance to chloride stress corrosion cracking, pitting and crevice corrosion.

Applications

CarTech Duplex 2507 stainless may be considered for use in oil and gas production equipment, such as valves, fittings, shafts and pump parts as well as equipment with exposure to a seawater environment.

Elevated Temperature Use

Duplex 2507 stainless is subject to 885 embrittlement when exposed for extended periods of time at temperatures of approximately 600 to 1000°F (315 to 538°C).

The alloy is also subject to precipitation of sigma phase when exposed to temperatures of approximately 1250 to 1550°F (677 to 843°C) for an extended time. Sigma phase increases strength and hardness but decreases ductility and corrosion resistance.

Corrosion Resistance

Duplex 2507 stainless provides excellent resistance to chloride-induced localized corrosion. An indicator of excellent chloride pitting and crevice corrosion is its high Pitting Resistance Equivalent Number (PREN) determined by the following chemical equation: (Cr%) + 3.3(Mo%) + 16(N%). Duplex 2507 stainless has a PREN greater than 40 compared to a PREN of 25 for Type 316.

Duplex 2507 stainless offers excellent resistance to uniform corrosion in various organic acids such as formic and acetic acids and inorganic acids containing chlorides. This alloy provides resistance in strong oxidizing media such as nitric acid and can be considered for use in dilute hydrochloric acid.

Austenitic stainless steels such as Type 304 and 316 can suffer stress corrosion in high-chloride, high-temperature conditions. Duplex 2507 stainless provides improved resistance under these conditions.

Duplex 2507 stainless provides good intergranular corrosion resistance.

CarTech® Duplex 2507 Stainless

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

		la ca concentration de la	
Nitric Acid	Good	Sulfuric Acid	Moderate
Phosphoric Acid	Moderate	Acetic Acid	Good
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Excellent
Sea Water	Excellent	Sour Oil/Gas	Good
Humidity	Excellent		

Typical Corrosion Properties – Duplex 2507 Stainless

1.375" (34.9 mm) Round Bar, annealed condition Duration of Environment Test Duplex 2507 Type 316 22Cr-13Ni-5Mn 3-48 hr 10% Formic - boiling periods 0.07 mpy 19.3 mpy 2.3 mpy 3-48 hr 0.0 mpy 50% Acetic - boiling periods 0.1 mpy 0.1 mpy 3-48 hr 10% H₂SO₄ - 80°C 0.15 mpy 112 mpy periods 15 mpy

Typical Intergranular Corrosion Properties – Duplex 2507 Stainless

1.375" (34.9 mm) Round Bar, annealed condition							
	Duration of						
Environment	Test	Duplex 2507					
65% HNO₃ - boiling	5-48 hr periods	7.4 mpy					
Ferric Sulfate/Sulfuric Acid - boiling	1-120 hr period	8.5 mpy					
*Intergranular tests							

Typical Pitting and Critical Crevice Temperature – Duplex 2507 Stainless

1 375" (34.9 mm) Round Bar, annealed condition

Environment	Duration of Test	Critical Crevice Temperature °F (°C)	Critical Pitting Temperature ° F (°C)
6% Ferric Chloride +1%HCL	24 hr period	113 (45)	176 (80)

Properties

Physical Properties

Specific Gravity	7.82	
Density	0.2817	lb/in ³
Mean Specific Heat	0.1200	Btu/lb/°F
Mean CTE		
77 to 212°F	7.20	x 10 ₋₀ in/in/°F
77 to 302°F	7.50	x 10 ₅ in/in/°F
77 to 392°F	7.80	x 10 ₅ in/in/°F
Thermal Conductivity		
77°F	104.0	BTU-in/hr/ft²/°F
212°F	110.9	BTU-in/hr/ft²/°F
392°F	117.9	BTU-in/hr/ft²/°F
572°F	128.8	BTU-in/hr/ft²/°F
Poisson's Ratio	0.300	
Modulus of Elasticity (E)	29.0	x 10 ³ ksi
Electrical Resistivity	481.0	ohm-cir-mil/ft

Typical Mechanical Properties

RR Moore Rotating Beam Fatigue Tests – Duplex 2507 Stainless

1.375" (34.9 mm) Round Bar

Annealed Condition				
Test	Stress	Cueles to Freeture		
ksi	MPa	Cycles to Flacture		
60	414	1.4 x 10 ⁷ (NF)		
65	449	1.3 x 10 ⁷ (NF)		
70	483	9.9 x 10 ⁴		
75	517	7 x 10 ⁴		
80	552	0.8 x 10 ⁴		

Annealed condition (2050F-1h-WQ)

NF indicates test was terminated without specimen fracturing. Standard 0.250" (6.4 mm) gage diameter fatigue specimens.

Typical Cryogenic Charpy V-Notch Impact Strength – Duplex 2507 Stainless 1.375" (34.9 mm) Round Bar

Test Ten	nperature	Longitudinal Specimen			
°F	°C	ft-lb	J		
73	23	266	361		
32	0	254	344		
0	-18	268	363		
-50	-46	208	282		

Longitudinal Specimens, Transverse Crack Propagation

Annealed condition (2050F-1h-WQ)

Typical Room and Elevated Temperature Tensile Properties – Duplex 2507 Stainless 1.375" (34.9 mm) Round Bar

Test Ten	Test Temperature		Yield ngth	Ultimate Stre	e Tensile ngth	% Elongation in 1" (25.4 mm)	% Reduction of Area
°F	°C	ksi	MPa	ksi	MPa	or 4D	
73	23	86	594	126	869	47	81
350	177	65	449	107	737	43	79
500	260	62	430	109	754	44	76
700	371	59	405	108	745	41	73
Longitudina	La na sim san s	a nan lad an	addian (DOE)				

Longitudinal specimens, annealed condition (2050F-1h-WQ)

Typical Room Temperature Tensile Properties - Duplex 2507 Stainless 0.6875" (17.5 mm) Cold Drawn Hexagonal Bar

Test Temperature		0.2% Stre	0.2% Yield Ulti Strength		e Tensile ength	% Elongation in 1" (25.4 mm) or	% Reduction of Area			
	°F	°C	ksi	MPa	ksi	MPa	4D	011100		
	73	23	147	1013	163	1124	20	76		
	Longitudinal specimens, appealed condition (2050E-1h-WO), 15% cold drawn									

Heat Treatment

Annealing

Heat to 1850/2050°F (1010/1121°C) and rapidly guench in water or air.

Hardening

Cannot be hardened by heat treatment. Can be hardened only by cold working. Typical hardness as-annealed is HRC 25.

Workability

Hot Working

Heat uniformly to 2200/2300°F (1204/1260°C). Reheat as often as necessary, keeping the temperature above 1850°F (1010°C). Cool forgings in air.

Cold Working

Cold working increases strength and hardness. The work hardening rate of Duplex 2507 stainless is lower than Type 304, an austenitic stainless steel; however, the annealed strength of Duplex 2507 is significantly higher.

Machinability

The machinability of Duplex 2507 generally has been between that of conventional Type 316 stainless and Carpenter 22Cr-13Ni-5Mn stainless.

The following chart includes typical machining parameters to machine Duplex 2507 stainless. The data listed should be used as a guide for initial machine setup only.

Turning - Single Point and Box Tools

Depth	ŀ	ligh Speed To	ools	Carbide Tools (Inserts)			
Of Cut	Tool	Speed	Feed	Tool	Speed	Feed,	
(inches)	Material	(fpm)	(ipr)	Material	Uncoated	Coated	ipr
.150	T15	85	.015	C2	350	450	.015
.025	M42	100	.007	C3	400	525	.007

Turning – Cut Off and Form Tools

Tool Ma	aterial		Feed, (ipr)							
High Speed	Carbide	Speed, fpm	Speed, Cut-Off Tool Form Tool fpm Width, Inches Width, Inches			s				
Tools	TOOIS		1/16	1/8	1/4	1/2	1	1-1/2	2	
M2	C2	75 275	.001 .004	.0015 .0055	.002 .007	.0015 .005	.001 .004	.001 .0035	.0001 .0035	

Rough Reaming

High Speed		Carl To	bide ols	Feed (ipr) Reamer Diameter, Inches			es		
Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1/8	1/4	1/2	1	1-1/2	2
M7	70	C2	90	.003	.006	.008	.012	.015	.018

Drilling

High Speed Tools									
Tool Speed Feed (inches per revolution) Nomi						ominal H	lole Dian	neter (in	ches)
Material	(fpm)	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2
M7, M10	50-60	.001	.002	.004	.007	.010	.012	.015	.018

Die Threading

FPM for High Speed Tools						
Tool Material	7 or Less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi		
M1, M2, M7, M10	8-15	10-20	15-25	25-30		

Milling – End Peripheral

÷	High Speed Tools						Carbide Tools					
Depth O Cut, In	Tool aterial	Speed (fpm)	Feed – Inches Per Tooth Cutter Diameter, Inches			Tool aterial	Speed (fpm)	Feed – Inches Per Tooth Cutter Diameter, Inches				
	2		1/4	1/2	3/4	1-2	2		1/4	1/2	3/4	1-2
.050	M2, M7	75	.001	.002	.003	.004	C2	270	.001	.002	.003	.005

Tapping

High Speed Tools					
Tool Material	Speed (fpm)				
M1, M7, M10	12-25				

Broaching

High Speed Tools						
Tool Material	Speed, fpm	Chip Load (ipt)				
M2, M7	15	.003				

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Weldability

Duplex 2507 stainless has been welded using many of the standard electric arc welding processes. Autogeneous welding will increase the amount of ferrite present in the weldment and heat affected zone. When a filler metal is required, consider AWS E/ER 2509.

Oxyacetylene welding is not recommended because carbon pickup in the weld may occur.

Postweld annealing is not required for most applications but is recommended for severe service.

Other Information

Applicable Specifications

Duplex 2507 stainless can be supplied according to the following ASTM specifications (and their corresponding ASME specifications, as available).

• ASTM A182

• ASTM A479

Forms Manufactured

Bar-Hexagons

Bar-Rounds

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 03/03/11