

CarTech® 19-9 DL Alloy

	Identification	
UNS Number		
• K63198		
AISI Number		
• No. 651		

Type Analysis					
Single figures are no	Single figures are nominal except where noted.				
Carbon	0.28 to 0.35 %	Manganese	0.75 to 1.50 %		
Silicon	0.30 to 0.80 %	Chromium	18.00 to 21.00 %		
Nickel	9.00 to 11.00 %	Molybdenum	1.00 to 1.75 %		
Titanium	0.10 to 0.35 %	Columbium + Tantalum	0.25 to 0.60 %		
Tungsten	1.00 to 1.75 %	Iron	Balance		

General Information

Description

CarTech 19-9 DL exhibits high strength and resistance to corrosion and oxidation at temperatures up to 1250°F (677°C).

Like all austenitic alloys of this type, CarTech 19-9 DL cannot be strengthened by thermal treatment and is frequently used in the annealed condition.

When higher properties are required they can be achieved by hot-cold working; that is, by starting the rolling or forging at 2000/2100°F (1093/1149°C) and finish working at 1200/1600°F (649/871°C).

Applications

CarTech 19-9 DL has been used in various high temperature applications such as:

Turbine wheels

Supercharger wheels

Buckets

Frames

Casings

Afterburner parts

Corrosion Resistance

19-9 DL possesses excellent resistance to corrosion against most atmospheres encountered in aircraft, automotive, diesel and jet engines up to approximately 1250°F (677°C).

Oxidation resistance is considered good under continuous operations up to 1750°F (954°C) and up to 1450°F (788°C) under intermittent operations.

Properties		
Physical Properties		
Specific Gravity	7.93	
Density	0.2860	lb/in³
Mean Specific Heat (32 to 212°F)	0.1000	Btu/lb/°F

CarTech® 19-9 DL Alloy

Mean CTE	
70 to 200°F	8.50 x 10 ⋅ in/in/°F
70 to 600°F	9.31 x 10 ⋅ in/in/°F
70 to 800°F	9.59 x 10 ⋅ in/in/°F
70 to 1000°F	9.78 x 10 ⋅ in/in/°F
70 to 1200°F	9.97 x 10 ⋅ in/in/°F
70 to 1500°F	10.0 x 10 ⋅ in/in/°F

Mean coefficient of thermal expansion

Temperature		Expansion Co	Coefficient	
70°F to	21.1°C to	10*/°F	10 ⁻⁴ /°C	
200	93	8.50	15.3	
600	316	9.31	16.8	
800	427	9.59	17.3	
1000	538	9.78	17.6	
1200	649	9.97	17.9	
1500	816	10.01	18.0	

Thermal	Condu	uctivity

70°F	94.00 BTU-in/hr/ft²/°F
800°F	128.0 BTU-in/hr/ft²/°F
1200°F	147.0 BTU-in/hr/ft²/°F

Thermal conductivity

Temperature		Thermal Co.	ductivity
°F	°C	Btu-in/ft²/hr/°F	W/m • K
70	21.1	94	13.6
800	427	128	18.5
1200	649	147	21.2

Madulua	of Flasticity	/ _\
MOGUIUS	of Flasficity	(H)

, , ,	
70°F	29.5 x 10 ³ ksi
1000°F	23.3 x 10 ³ ksi
1501°F	20.0 x 10 ³ ksi

Modulus of elasticity

Temperature		Modulus of Elasticity	
°F	°C	psi x 10 ⁴	MPa x 10 ³
70	21.1	29.5	203
1000	538	23.3	161
1500	816	20.0	138

Electrical Resistivity (70°F)

Melting Range

466.0 ohm-cir-mil/ft

2500 to 2600 °F

Magnetic Properties

Magnetic Permeability (20.0 Oe) 1.0050 to 1.0900 Mu

Typical Mechanical Properties

Elevated Temperature Secondary Creep Rate-19-9 DL and 19-9 DX

Test		Stress for minimum creep rate of:			
Tempe	rature	0.0001% hr. 0.00001% h		1% hr.	
°F	°C	ksi	MPa	ksi	MPa
1000 1200 1350 1500	538 649 732 816	40 19.5 10 5.5	276 135 69 38	19 9.8 5.2 —	131 68 36

Elevated Temperature Stress Rupture Properties—19-9 DL and 19-9 DX

Bar stock

For tests below 1300°F (704°C), specimens have been warm worked and stress relieved. For tests above 1300°F (704°C), specimens have been solution treated and aged.

Te	st			Stres	s to Produ	Produce Rupture in:							
Tempe	Temperature 10 Hours		ours	100 H	lours	1,000	Hours	10,000 Hours					
°F	°C	C ksi MPa		ksi	MPa	ksi	MPa	ksi	MPa				
1000	538	73	503	64	441	56	386	48	331				
1200	649	50	345	44	303	37	255	31	214				
1350	732	30.5	210	22.5	155	17	117	12.5	86				
1500	816	20	138	13	90	8.6	59	5.6	39				

Elevated Temperature Tensile Properties-19-9 DL and 19-9 DX

Bar stock hot rolled and stress relieved to Brinell 217

Test Temperature °F °C			trength Offset		sile ngth	% Elongation in 2"	% Reduction		
		ksi MPa		ksi	MPa	(50.8 mm)	of Area		
70 1000 1200 1400	21.1 538 649 760	67.5 42 37 35.5	465 290 255 245	109.6 89 75 42.6	756 614 517 294	38.5 43.0 33.5 35.0	48.0 52.0 33.5 60.0		

Impact Strength-19-9 DL and 19-9 DX

V-Notch Charpy

						Imp	act	nt Tes	t Ten	perat	ure				
Condition	Hardness BHN	-32 -19		-10 -76	4°F	76 24.4		500 260		100 538	0°F	120 649	0°F 0°C		0°F 5°C
		ft-lb	J	ft-lb	J	ft-lb	J	ft-lb	J	ft-lb	J	ft-lb	J	ft-lb	J
Hot Rolled and Stress Relieved at 1200°F (649°C)	228	_	_	_	_	46	62	53	72	52	71	56	76	60	81
Annealed 1800°F (982°C) Air Cooled	196	25	34	38	52	53	72	_	_	_	_	_	_	_	_
Warm Work and Stress Relieved	311	11	15	19	26	27	37	_	_	_	_	_	_	_	_
Cold Drawn and Stress Relieved	286	13	18	19	26	22	30	_	_	_	_	_	_	_	_

Room Temperature Tensile Properties—19-9 DL and 19-9 DX

Condition	Yield S 0.2%		Ten Stree		%	% Reduction
	ksi	MPa	ksi	MPa	Elongation	of Area
Hot Rolled and Stress Relieved	67.5	465	109.6	756	38.5	48.0
Hot-Cold Rolled and Stress Relieved 1500°F (816°C)	84.1	580	117.25	808	31.0	47.3
Hot-Cold Rolled and Stress Relieved 1200°F (649°C)	102.9	710	136.3	940	24.0	43.0

Heat Treatment

19-9 DL is an austenitic alloy which cannot be strengthened by heat treatment. This alloy is normally used in the annealed condition or in the hot-cold worked condition.

CarTech® 19-9 DL Alloy

Annealing

Solution treat bars and forgings to 1800/2150°F (982/1177°C), cool rapidly and follow by an aging or stress relieving operation at 1200/1400°F (649/760°C). Sheet and strip should be annealed in the range of 1650/1800°F (899/982°C).

Stress Relieving

Heat to 1200/1400°F (649/760°C), hold at heat for a minimum of 1 hour, then air cool.

Workability

Hot Working

Roll or forge from 2000/2100°F (1093/1149°C) and finish work at 1200/1600°F (649/871°C).

Forging

19-9 DL can be readily hot forged, headed, upset and riveted. These alloys should be forged from a temperature of 2000/2100°F (1093/1149°C), allowing sufficient time for a through soak.

Cold Working

19-9 DL may be cold formed in the annealed condition. This alloy stiffens and work hardens more rapidly than the 300 series stainless steels. Severe cold forming operations should be immediately followed by a stress relieving treatment.

Machinability

19-9 DL may be machined using the techniques employed on the standard austenitic stainless steels. Best machinability is realized when these materials are solution treated, cold worked 15/20% and stress relieved.

Following are typical feeds and speeds for 19-9 DL.

Turning-Single Point and Box Tools

		High	-Speed T	ools	Carbide				
0 444	Depth	0	Food	T1	Speed	i, fpm	Food	Tool	
Condition	Cut In.	Speed, fpm	Feed, ipr	Tool Material	Brazed	Throw Away	Feed, ipr	Material	
Solution Treated	.100	35	.015		135	160	.015	C-2	
Column Treates	.025	40	.007] _{M-42} [160	190	.007	C-3	
Aged	.100	30	.010] [120	140	.010	C-2	
r.gcc	.025	35	.007		140	165	.007	C-3	

Turning-Cut-Off and Form Tools

			Feed, ipr								
Condition	Speed, fpm		ut-Off To dth, Incl				Tool Inches		Tool Material		
		1/16	1/8	1/4	1/2	1	1-1/2	2			
Solution Treated	25	.002	.004	.005	.003	.002	.002	.001	M-42		
Solution freated	95	.003	.005	.007	.004	.003	.003	.002	C-2		
Aged	20	.002	.004	.005	.003	.002	.002	.001	M-42		
Aged	80	.003	.005	.007	.004	.003	.002	.0015	C-2		

Drilling

Condition	Speed,	išmirai.			Feed	d, ipr				
	fpm		N		Tool Material					
		1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	material
Solution Treated	25	_	.002	.004	.006	.008	.010	_	_	M-42
Aged	20	_	.002	.004	.006	.008	.008	_	_	1

Reaming

Condition			Н	igh-Sp	eed To	ool			Carbic	de Tool	
			Fee	d, Inch	es per	Rev					
Condition	Speed, fpm		Reame	er Dian	neter,	Inches	;	Tool Material	Speed, fpm	Tool Material	
	.,	1/8	1/4	1/2	1	1-1/2	2		.,	111210112	
Solution Treated	30	.003	006	.010	012	014	016	M-42	100	C-2	
Aged	25	.003	.006	.010	.012	.014	.016	101-42	80] 02	

Tapping

Condition	Speed, fpm	Tool Material
Solution Treated	15	M-1;M-7;M-10
Aged	10	M-1;M-7;M-10; Nitrided

Die Threading

		Speed, fpm								
Condition	7 or Less	8 to 15	16 to 24	25 and up T.P.I.	Tool Material					
Annealed	4-6	5-8	6-10	8-12	M-2;M-7;M-10					
Aged	3-4	3-5	4-8	5-10	M-42					

Milling-End Peripheral

			High-Speed Tools					Carbide Tools							
	Depth		Feed-Inches per tooth				Feed-Inches per tooth								
Condition	of Cut In.	Speed,	Cutte	r Diam	eter, Ir	nches	Tool			r Dian	neter, Ir	nches			
		fpm	1/4	1/2	3/4	1.2	Material	fpm	1/4	1/2	3/4	1-2	Materia		
Solution Treated	.050	30	.002	.002	.003	.004	M-42	120	.001	.002	.003	.004	C-2		
Aged		20	.002	.002	.003	.004	W-42	80		.002	.003	.004	02		

Broaching

Condition	Speed, fpm	Chip Load, Inches per tooth	Tool Material		
Solution Treated	12	.002	M-42		
Aged	10	.002	181-42		

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Additional Machinability Notes

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life.

Speeds or feeds should be increased or decreased in small steps.

Weldability

19-9 DL may be welded using the various electric arc methods. Although not always necessary, welding could be followed by a stress relieving operation at 1650/1800°F (899/982°C) to minimize sensitivity to intergranular corrosion.

Other Information			
Applicable Specifications			
• AMS 5526 (Strip)		• AMS 5527 (Strip)	
AMS 5720 (Bars and Forgings)		AMS 5721 (Bars and Forgings)	
AMS 5722 (Bars and Forgings)			
Forms Manufactured			
Bar-Rounds	• Strip		

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 02/01/1989