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Abstract

The microbiome plays a vital role in human health and disease. Interaction between human
hosts and the microbiome occurs through a number of mechanisms, including transcrip-
tomic regulation by microRNA (miRNA). In animal models, circadian variations in miRNA
and microbiome elements have been described, but patterns of co-expression and potential
diurnal interaction in humans have not. We investigated daily oscillations in salivary miRNA
and microbial RNA to explore relationships between these components of the gut-brain-axis
and their implications in human health. Nine subjects provided 120 saliva samples at desig-
nated times, on repeated days. Samples were divided into three sets for exploration and
cross-validation. Identification and quantification of host miRNA and microbial RNA was per-
formed using next generation sequencing. Three stages of statistical analyses were used to
identify circadian oscillators: 1) a two-way analysis of variance in the first two sample sets
identified host miRNAs and microbial RNAs whose abundance varied with collection time
(but not day); 2) multivariate modeling identified subsets of these miRNAs and microbial
RNAs strongly-associated with collection time, and evaluated their predictive ability in an
independent hold-out sample set; 3) regulation of circadian miRNAs and microbial RNAs
was explored in data from autistic children with disordered sleep (n = 77), relative to autistic
peers with typical sleep (n = 63). Eleven miRNAs and 11 microbial RNAs demonstrated con-
sistent diurnal oscillation across sample sets and accurately predicted collection time in the
hold-out set. Associations among five circadian miRNAs and four circadian microbial RNAs
were observed. We termed the 11 miRNAs CircaMiRs. These CircaMiRs had 1,127 pre-
dicted gene targets, with enrichment for both circadian gene targets and metabolic signaling
processes. Four CircaMiRs had “altered” expression patterns among children with disor-
dered sleep. Thus, novel and correlated circadian oscillations in human miRNA and micro-
bial RNA exist and may have distinct implications in human health and disease.
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Introduction

The proper regulation of sleep in humans is critical for normal mental and physical health.
Most major organ systems exhibit fluctuations in their functional state related to sleep-wake
cycles or circadian rhythm [1-3]. Disturbances in sleep or disruption of circadian rhythm are
a common problem in many chronic brain disorders, including autism, depression, Parkin-
son’s, and Alzheimer’s. These symptoms have a negative impact on activities of daily living [3].

During sleep-wake cycles there are numerous molecular, cellular, and physiological changes
that occur. Many of these changes are driven by circadian regulatory genes, such as CLOCK
and BMAL [4]. These, in turn, cause a vast array of changes in the expression of physiologically
significant genes, proteins, and hormones, influencing nearly every body system. However,
apart from light-dark cycles, the factors that influence expression of circadian rhythm are not
fully understood.

MicroRNAs (miRNAs) are small, noncoding RNA fragments, approximately 20-22 nucleo-
tides long in their mature state. MiRNAs are involved in post-transcriptional regulation of
gene expression [5-8]. After processing by endonucleases [8, 9], single-stranded miRNAs
combine with other macromolecules to form RNA-induced silencing complexes (RISCs).
RISCs target complementary messenger RNA (mRNA) strands for degradation and interfere
with translation, thereby altering cellular function [8, 9]. MiRNAs exert widespread influence
on gene expression. More than 1900 identified miRNAs have been shown to affect the expres-
sion of up to 60% of all genes [10-13]. MiRNAs play a role in virtually all cellular functions,
such as cell proliferation, differentiation, and apoptosis [6, 10, 11].

MiRNAs are found in nearly all body cells, tissues, and biofluids [10, 14]. Because miRNAs
regulate the majority of human genes, a considerable number of circadian genes are now
thought to be directly under their influence, including CLOCK and BMAL, among others
[15]. MiRNAs that circulate throughout the body in extracellular fluids are also resistant to
enzymatic degradation [16], and thus may act as critical components of a molecular endocrine
system [17]. Indeed, there are now considerable data implicating miRNAs in the control of
various endocrine and metabolic tissues, such as the pineal and pituitary glands [18], the hypo-
thalamus, and the gastrointestinal (GI) tract. Furthermore, disruption of circadian regulation
by miRNAs can lead to significant pathology [19].

Notably, the activities of miRNAs in the gut appear to extend beyond the regulation of host
gene expression, and include a strong relationship with the resident bacteria of the micro-
biome [20, 21]. Within the GI system, the microbiome contributes to energy harvesting by
generating numerous metabolites and intermediates that influence the function of other organ
systems, including the brain and endocrine organs [22]. Recent evidence also indicates that
there are circadian changes in the gut microbiome [23]. Thus, cross-talk between host miR-
NAs and the GI microbiome may work in concert to influence temporal changes in gene
expression that drive host behavior and disease.

To our knowledge, only one prior study has demonstrated diurnal variations for a select
number of cell free microRNAs in human plasma, using quantitative RT-PCR [24]. How-
ever, no prior studies have harnessed next-generation sequencing to investigate diurnal varia-
tions for the entire micro-transcriptome, or explored these diurnal patterns in the GI tract
parallel to the microbiome. We hypothesized that 1) a saliva-based collection method would
identify host miRNA and microbial RNA elements with consistent and parallel circadian
oscillations; 2) these RNA elements would target functionally-relevant biologic pathways
related to host immunity, circadian rhythm, and metabolism; and 3) a subset of circadian
miRNAs would demonstrate “altered” expression in a cohort of children with disordered sleep
patterns.
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Identifying circadian candidates

Sample Set 1 Sample Set 2
8AM & 8PM 8AM, 12PM, 4PM, 8PM
Days 1,3,7 Days 1, 5, 10, 15

4 participants 3 participants

2-way ANOVA 2-way ANOVA

v

Validating Circadian RNAs ) )
Exploring microRNA

Exploring microRNA

: : Sample Set 3 & microbial relationships
& mRNA relationships 12 non-repeated times . 0
Pearson correlations: | €—— Days 1, 2 ——3 | Pearson correlations:
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mRNA levels Multivariate regression CircaMicrobe levels

|

Functional Interrogation

Relationship to ADLs
Pearson correlations:

Target Pathways Sample Set 4
Target genes of CircaMiRs 1 collection time
from DIANA miRpath 77 children w/ autism & Time since last sleep
Target metabolic pathways disordered sleep Time since last meal

of CircaMicrobes 63 children w/ autism only || Time since last toothbrush

Fig 1. Flow chart outlining the analytic approach for the current study. Briefly, sample sets 1 and 2 were used to
identify circadian RNA candidates (green), which were then validated in sample set 3 (blue). Relationships between
CircaMiR levels and CircaMicrobes, or mRNA targets were explored (orange). The functional implications of
CircaMiRs and CircaMicrobes were interrogated through annotation analyses and characterization in a cohort of
children with disordered sleep (sample set 4; red). The relationship of oscillating RNA with patterns of daily activity
(sleep, eating, and tooth brushing) were also investigated.

https://doi.org/10.1371/journal.pone.0198288.9001

Results
Salivary miRNA analysis

An overview of the sample sets and analyses is provided (Fig 1). Sample set 1 contained 24
saliva samples collected at 2 time-points (~9 AM, 9 PM) on 3 days from 4 participants. There
were a total of 98 miRNAs in set 1 with a significant effect of collection time (FDR < 0.01) and
no effect of day of collection (FDR > 0.05). Sample set 2 contained 48 samples collected at 4
time-points (~9 AM, 1:30 PM, 5:30 PM, 9 PM) on 4 days from 3 participants. There were a
total of 123 miRNAs in set 2 that showed a significant effect of collection time and no effect of
day. Levels of 61 miRNAs were similarly affected by time of collection in both sample sets and
were defined as putative CircaMiRs (S1 Table).

Hierarchical (heat map) clustering using salivary concentrations of the 61 CircaMiRs was
performed for sample set 1 (Fig 2A) and sample set 2 (Fig 2B). In both sample sets, the major-
ity of CircaMiRs (n = 49; 80%) demonstrated lower levels in the morning and higher levels in
the evening. Examination of the 61 miRNAs across four time points (sample set 2) revealed
only a single oscillation (i.e. a single daily peak) between 9AM and 9PM. These daily oscilla-
tions were consistent across days of collection and across participants, as reflected by the lack
of significant day effects in the two -way ANOVA (S1 Table).

From the 61 CircaMiR candidates, 11 miRNAs were identified as robust multivariate pre-
dictors of collection time through a feature selection algorithm using a linear regression
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Fig 2. Salivary miRNA levels change across time. (A) Heat map clustering of expression data for the 61 miRNAs
changed according to collection time in sample set 1. This set consisted of 24 samples from 4 subjects across 3 days of
sampling (days 1, 3, 7) at a frequency of 2 times/day (9 am, 9 pm). (B) Heat map clustering of expression data for the
61 miRNAs changed according to collection time in sample set 2. This set consisted of 48 samples from 3 subjects
obtained across 4 days of sampling (days 1, 5, 10, 15) at a frequency of 4 times/day (9 am, 1:30 pm, 5:30 pm, 9 pm).

https://doi.org/10.1371/journal.pone.0198288.9002

analysis. The regression model accurately predicted collection time in all 3 sample sets, with
Multiple R values ranging from 0.805-0.956 and Adjusted R values ranging from 0.54-0.833
(Table 1). Notably, the multivariate model performed best when applied to samples collected
during a wakeful state (9 AM-12 AM) and model performance significantly improved in sam-
ple set 3 when 4 AM samples were excluded (Adjusted R = 0.880 vs 0.794, Table 1, upper).
This improvement was due to non-linear trends in the expression data during the overnight
period (a circadian oscillation of high values back to low values and vice versa). In fact, the pre-
dictive utility of the linear regression model (R* = 0.79; Fig 3A) was even found to be inferior
to a non-linear regression model that used the sine-transformed average miRNA values for just
one of the 61 CircaMiRs in the set 3 samples (R* = 0.93; Fig 3B). Interestingly, further inspec-
tion of the alpha (intercept) and beta (slope) coefficient terms across the independent sample
set regressions indicated a very high degree of internal consistency in these models (Table 2),
with highly significant correlations present between all sets of model term comparisons except
sample set 1 and sample set 3 with the 4 AM samples included.

Table 1. Salivary miRNA and microbial RNA model performance for predicting collection time.

Multiple R Adjusted R? P-value Mean Absolute Error (%)
microRNAs
Sample set 1 (n = 24) 0.956 0.833 9.5E-05 9.2
Sample set 2 (n = 48) 0.805 0.540 1.8E-05 14.6
Sample set 3 (n = 48) 0.918 0.794 2.8E-11 12.7
Sample set 3 (no 4AM, n = 44) 0.954 0.880 1.1E-13 8.1
microbial RNAs
Sample set 1 (n = 24) 0.927 0.732 0.0013 13.1
Sample set 2 (n = 48) 0.784 0.496 7.5E-05 15.0
Sample set 3 (n = 48) 0.770 0.468 1.8E-04 214
Sample set 3 (no 4AM, n = 44) 0.849 0.624 3.6E-06 15.1

https://doi.org/10.1371/journal.pone.0198288.t001
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Fig 3. Accurate prediction of collection time from salivary miRNA levels. (A) 11 of the total 61 identified miRNA
predictors and their accuracy of prediction for sample set 3. (B) Sine transformed values of the average expression of 1
of the 61 CircaMiRs (miR-199b-3p) for the subjects in sample set 3 (collected at various times across 2 days).

https://doi.org/10.1371/journal.pone.0198288.g003

Salivary microbiome analysis

Sample set 1 contained a total of 75 microbial RNAs with a significant effect of collection time
(FDR < 0.01) and no effect of day of collection (FDR>0.05). Sample set 2 contained a total of
32 microbial RNAs with a significant effect of collection time and no effect of day of collection.
Eleven microbial RNAs with diurnal oscillations in sample sets 1 and 2 overlapped (Table 3).
The 11 RNAs from these 11 distinct microbial species were defined as putative CircaMicrobes,
and examined for their ability to predict collection time in sample set 3.

A multivariate linear regression model utilizing the 11 microbial RNAs was also able to
accurately predict collection time in all 3 sample sets, with Multiple R values ranging from
0.770-0.927 and Adjusted R* values ranging from 0.468-0.732 (Table 1). As with the miRNA
model, a non-linear relationship between the time of collection and microbial RNA concentra-
tions in sample set 3 reduced the overall accuracy of the microbial model across the full 24
hour time cycle compared to when the 4 am samples were removed from analysis (Adjusted
R® = 0.468 vs 0.624, Table 1), which yielded results comparable to those seen in sample sets 1
and 2. Likewise, inspection of the alpha (intercept) and beta (slope) coefficient terms across
the independent sample set regressions again indicated a very high degree of internal consis-
tency in these models with highly significant correlations present between all sets of model

term comparisons (Table 2).

Table 2. Correlations of salivary miRNA and microbial model terms across sample sets.

miRNA model (11 beta coefficients + intercept)

Set 1 Set2 Set 3 Set 3 no 4 am
Set 1 0.7469 0.5399 0.7207
Set 2 0.0053 0.7060 0.8409
Set 3 0.0698 0.0103 0.9647
Set 3no4am 0.0082 0.0006 <.0001
Microbial RNA model (11 beta coefficients + intercept)
Set 1 Set2 Set 3 Set 3 no 4 am
Set 1 0.8929 0.8319 0.9066
Set 2 < .0001 0.8699 0.9542
Set 3 0.0008 0.0002 0.9630
Set 3 no 4 am <.0001 <.0001 <.0001

https://doi.org/10.1371/journal.pone.0198288.t1002
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Table 3. List of 11 microbes most related to collection time.

Sample set 1 Sample set 2
Taxon ID Taxon name Day Time Interaction Day Time Interaction
1510155 Falconid herpesvirus 1 0.7246 0.0003 0.1104 0.9999 0.0009 0.9982
553174 Prevotella melaninogenica ATCC 25845 0.8213 0.0011 0.1693 0.9999 0.0359 0.9982
862965 Haemophilus parainfluenzae T3T1 0.2276 0.0061 0.2426 0.9999 0.0045 0.9982
479436 Veillonella parvula DSM 2008 0.7246 0.0076 0.1069 0.9999 0.0001 0.9982
458233 Macrococcus caseolyticus JCSC5402 0.0830 0.0338 0.1302 0.9999 0.0381 0.9982
190304 Fusobacterium nucleatum subsp. nucleatum ATCC 25586 0.9782 0.0127 0.1069 0.9999 0.0350 0.9982
724 Haemophilus 0.5928 0.0127 0.2426 0.9999 0.0139 0.9982
469604 Fusobacterium nucleatum subsp. vincentii 3136A2 0.7246 0.0209 0.1069 0.9999 0.0187 0.9982
11855 Mason-Pfizer monkey virus 0.5439 0.0213 0.4616 0.9999 0.0046 0.9982
360107 Campylobacter hominis ATCC BAA-381 0.9713 0.0359 0.2413 0.9999 0.0084 0.9982
838 Prevotella 0.7246 0.0482 0.2844 0.9999 0.0037 0.9982

https:/doi.org/10.1371/journal.pone.0198288.t003

Relationship between CircaMiRs and CircaMicrobes

Relationships between levels of the 11 CircaMiRs and the 11 microbes with oscillating tran-
scriptional activity were assessed across all 120 samples from sample sets 1, 2, and 3 using a
Pearson’s correlation analysis. With the exception of one CircaMiR (miR-200b-3p) and one
CircaMicrobe (Macrococcus caseolyticus), the CircaMiRs and CircaMicrobes were generally
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Fig 4. Quantitative relationships between CircaMiRs and CircaMicrobes. A Pearson’s correlation analysis was used
to compare expression of 11 CircaMiRs and 11 CircaMicrobes. The 22 features are sorted by a complete clustering
algorithm, and the hierarchical tree indicates similarity in expression pattern across samples. Blue indicates strong
inverse relationships while red indicates strong direct relationships.

https://doi.org/10.1371/journal.pone.0198288.g004
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segregated by hierarchical clustering of expression patterns (Fig 4). However, 5/11 (45%) Cir-
caMiRs and 4/11 (36%) CircaMicrobes demonstrated significant (|R|>0.40, FDR<0.0001)
associations. Three of these relationships involved direct associations (miR-8089/Micrococcus
caseolyticus, miR-200b-3p/Fusobacterium nucleatum subsp. nucleatum, and miR-200b-3p/
Falconid herpesvirus 1). There were five inverse associations between CircaMiRs and Circa-
Microbes (miR-221-3p/Falconid herpesvirus 1, miR-128-3p/Fusobacterium nucleatum subsp.
nucleatum, miR-128-3p/Fusobacterium nucleatum subsp. vincentii, miR-345-5p/Fusobacter-
ium nucleatum subsp. nucleatum, miR-345-5p/Falconid herpesvirus 1).

CircaMiR target genes

Functional analysis of the 11 CircaMiRs in DIANA miRPath revealed 1265 high confidence
(p<0.05, Micro-T threshold > 0.95) mRNA targets with enrichment for 22 KEGG pathways
(Table 4). Notably, 11/22 KEGG pathway targets were involved in cell signaling. Interestingly,
circadian rhythm was not among the KEGG pathways targeted by the 11 CircaMiRs according
to this analysis. However, of the 30 human mRNAs in the circadian rhythm KEGG pathway
(hsa04710), four (13%; Csnkle, Rora, BHLHE40, and Prkaa2) were targeted by the 11 Circa-
MiRs. To more closely examine the potential relationship of CircaMiRs and circadian func-
tion, we expanded the analysis to the initial 61 CircaMiRs and used IPA software (which
included additional circadian mRNA targets). The results revealed a significant overlap in Cir-
cadian Rhythm Signaling targets (13/34 mRNAs, 38%, p = 2.2e-38) based on moderate-to-high
probability predicted interactions, or experimentally-observed interactions. A complete list of
the 28 mRNA transcript isoforms encompassing the 13 mRNAs and their 37 CircaMiR inter-
actors is provided (S2 Table).

Table 4. Physiologic pathways over-represented by mRNA targets of the 11 CircaMiRs.

KEGG pathway p-value #genes #miRNAs
Rapl signaling pathway 7.7E-05 30 9
Mucin type O-Glycan biosynthesis 1.5E-03 4 4
Ras signaling pathway 2.1E-03 30 8
Estrogen signaling pathway 2.1E-03 14 7
Lysine degradation 2.5E-03 6 6
ErbB signaling pathway 3.3E-03 17 7
PI3K-Akt signaling pathway 3.8E-03 38 9
Proteoglycans in cancer 4.7E-03 23 7
Neurotrophin signaling pathway 4.9E-03 19 7
Choline metabolism in cancer 5.2E-03 15 8
Renal cell carcinoma 1.2E-02 12 6
mTOR signaling pathway 1.5E-02 11 6
Prolactin signaling pathway 1.5E-02 11 7
MAPK signaling pathway 1.5E-02 29 8
FoxO signaling pathway 2.0E-02 17 7
Long-term potentiation 2.5E-02 11 7
Endocytosis 2.5E-02 21 8
Focal adhesion 3.6E-02 23 8
Oocyte meiosis 3.6E-02 14 7
Protein processing in endoplasmic reticulum 4.6E-02 18 5
Insulin signaling pathway 4.6E-02 17 5
Glutamatergic synapse 5.0E-02 13 5

https://doi.org/10.1371/journal.pone.0198288.t1004
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The MiRpath target mapping tool also failed to detect enrichment of KEGG pathways
involved in immune function or bacterial regulation among the 11 CircaMiR targets (or the 5
CircaMiRs with microbial associations in Fig 4). However, several of the CircaMiRs that
mapped to circadian genes were found to target mRNAs that were clearly involved in immune
function (S2 Table). Subsequent interrogation of the protein-protein interaction network for
all 1127 unique mRNA targets of the 11 most robust CircaMiRs using STRING software,
revealed 3794 edges (interactions) with a clustering coefficient of 0.32. This exceeds the num-
ber of protein-protein interactions expected by chance alone (p = 1.0E-16), and implies inter-
relatedness of CircaMiR targets. Among the expected protein targets, 471 were involved in reg-
ulation of metabolic process (GO:0019222; FDR = 8.5E-23), 413 were involved in regulation of
macromolecule metabolic process (GO:0060255; FDR = 4.9E-22), and 425 were involved in
regulation of cellular metabolic process (GO:0031323; FDR = 8.9E-22; S3 Table).

Transcript overlaps

Of the 1265 mRNAs targeted by the 11 CircaMiRs with high confidence (micro-T-cds

score > 0.950), 38 were reliably detected in saliva (counts > 10 in 10% of samples) with small
RNA sequencing at 50 base pairs. Among these 38 mRNAgs, the salivary levels of 8 (21%) were
significantly associated (FDR<0.05) with their CircaMiR counter-parts (Table 5). Two
mRNAs were positively associated with miR-130b-3p (ATXN1, FOSL2), three were positively
associated with miR-142-5p (GRIN2B, MSL2, NAMPT), one was negatively associated with
181c-5p (WASL), and two were positively associated with miR-200b-3p (YOD1, YWHAG).
The strongest relationship was observed between miR-142-5p and GRIN2B (R = 0.53,

FDR = 8.71E-09, Target score = 0.984), a member of the Circadian Rhythm Signaling pathway
in IPA.

Metabolic targets of the oral microbiome

RNA expression patterns of oral microbes from the 9 participants in sample sets 1, 2, and 3
were examined for evidence of diurnal variations in metabolic and functional clusters across
four time periods: 7-9 AM, 10 AM-2 PM, 3-6 PM, and 7-10 PM. Among the 202 functional
clusters targeted by microbial RNAs, 22 pathways demonstrated nominal (p<0.05) differences
in representation across the four time periods (Fig 5A). Four of these functional pathways
(nucleotide sugar biosynthesis, galactose; replication recombination and repair; sphingolipid
metabolism; and purine metabolism) survived multiple testing corrections (FDR<0.15).
Among the 22 functional pathways with nominal changes, a cluster of seven pathways was up-
regulated mid-day (10 AM-2 PM), while 10 pathways demonstrated diurnal peaks in the
morning (7-9AM) and evening (7-10 PM). Visualization of functional pathway expression

Table 5. Transcripts targeted by CircaMiRs with associated expression levels across time.

MicroRNA Gene
miR-130b-3p ATXNI1
miR-130b-3p FOSL2
miR-142-5p GRIN2B
miR-142-5p MSL2
miR-142-5p NAMPT
miR-181c-5p WASL
miR-200b-3p YOD1
miR-200b-3p YWHAG

https://doi.org/10.1371/journal.pone.0198288.1005

R T-stat p-value FDR Micro-CDS Target Score
0.37395 4.3799 2.59E-05 0.000129 0.963
0.49302 6.1557 1.06E-08 1.23E-07 0.969
0.53012 6.7914 4.76E-10 8.71E-09 0.984
0.42696 5.129 1.16E-06 6.49E-06 0.981
0.51006 6.4417 2.67E-09 3.5E-08 0.969
-0.2945 -3.3476 0.001094 0.002056 0.966
0.23098 2.5788 0.011142 0.031478 0.973
0.29093 3.3032 0.001266 0.005204 0.985
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Fig 5. Changes in functional microbiome expression across time. (A) The hierarchical heat map displays average
abundance values for microbial RNAs representing 22 KEGG/COG metabolic pathways, that displayed nominal
differences (p<0.05) in expression across 4 time periods (7-9 AM, 10 AM-2 PM, 3-6 PM, 7-10 PM). The dendrogram
(y-axis) represents inter-relatedness of KEGG/COG pathway activity measured by Pearson distance metric across the
120 samples. Red denotes relative increased abundance of KEGG/COG transcripts, while blue denotes relative
decrease in related transcripts. Chi-square and raw p-values (Kruskal-Wallis ANOVA) are displayed for each of the 22
pathways. (B) A partial least squares discriminant analysis utilizing mean abundance levels for all 202 KEGG/COG
metabolic pathways with microbial RNA mappings is displayed for the four collection time periods. Note that global
metabolic activity in these 202 pathways achieves partial separation of the four time periods, while accounting for
20.6% of the variance in the dataset.

https://doi.org/10.1371/journal.pone.0198288.g005

Component 2 (9.1%)

Log2 Difference

differences in a partial least squared discriminant analysis resulted in partial separation of the
four time periods, while accounting for 20.6% of the variance in COG/KEGG data in two
dimensions (Fig 5B).

Measuring CircaMiR levels in children with disordered sleep

Differences in salivary miRNA expression between autistic children with (n = 77) and without
(n = 63) disordered sleep was assessed with Mann Whitney U-test. Among the 61 CircaMiRs
three demonstrated differences (FDR<0.05) between the two groups (miR-26a-5p, miR-24-
3p, miR-203a-3p; S4 Table). Because this approach could not account for phase shifts in diur-
nal miRNA expression, salivary miRNA levels in the ASD cohort were also assessed with a
2-way ANOVA accounting for sleep disorder diagnosis and saliva collection time. This
ANOVA analysis included the 11 robust CircaMiRs and the three miRNAs identified on
Mann-Whitney testing. Among these 14 miRNAs, 4 demonstrated a significant interaction
(p<0.05) with sleep disorder diagnosis (miR-24-3p, miR-200b-3p, miR-203a-3p, miR-26a-5p),
5 demonstrated a significant interaction with collection time (miR-142-5p, miR-181c-5p,
miR-200b-3p, miR-203a-3p, miR-26a-5p), and 3 were affected by both factors (Fig 6). We also
detected a significant interaction between collection time and sleep disorder diagnosis for one
CircaMiR (miR-629-5p).

Based on the ability of the 11 CircaMiRs to predict time of collection in 11 typically devel-
oping, healthy children (and adults) in sample sets 1, 2 and 3, we also used a multivariate
regression model examining their ability to predict time of collection in the 63 children with
ASD and a normal sleep pattern, and the 77 children with ASD and comorbid disordered
sleep. As we had seen in sample sets 1, 2 and 3, these 11 CircaMiRs yielded a significant regres-
sion (R* = 0.41, Fy 1, = 3.19, p <0.0023) that accurately predicted the time of collection with a
mean absolute error of 15.25% (Fig 7). Inspection of the multivariate regression coefficients
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Fig 6. Relationships between CircaMiRs, collection time, and sleep disorder in children with autism spectrum
disorder. A two-way ANOVA was performed to assess the relationship between CircaMiR expression level, collection
time, and the presence/absence of disordered sleep in a cohort of 140 children with autism spectrum disorder The
Venn diagram (center) shows that 7/14 (50%) of theses CircaMiRs displayed significant relationships with collection
time, disordered sleep, or a time-sleep interaction. Mean expression level at 6 time points (8-9AM, 10-11AM, 12-1PM,
2-3PM, 4-5PM, and 6-8PM) is displayed for participants with (red), or without (blue) disordered sleep for each of the 7
CircaMiRs of interest. Two-way ANOVA p-values are listed for each CircaMiR in the embedded table (center,
bottom).

https://doi.org/10.1371/journal.pone.0198288.9006

20

R2=0.41
p <0.0023

Predicted time of day (24h)

4 8 112 116 20
Actual Time of day (24h)

Fig 7. Multivariate regression with CircaMiRs predicts collection time in sample of children with autism
spectrum disorder. The graph plots the relationship between the predicted time and actual time in hours for a subset
of 63 autistic children who had normal sleep patterns using 11 CircaMiRs. The lines above and below the regression
line indicate the 95" confidence interval of the fitted regression. The colored ellipse represents the 95 confidence
interval of the actual data points. Note that there was an absence of a significant relationship in autistic children with a
sleep disorder (not shown).

https://doi.org/10.1371/journal.pone.0198288.9007
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and T scores indicated that no individual miRNA was significant in the presence of the others,
although three showed strong trends (miR-629-5p, miR-22-5p, and miR-128-3p) (Table 6). In
contrast to the significant regression findings for the ASD children without sleep disorder

(n = 63), the regression results for the ASD children with sleep disorders (n = 77) using the 11
CircaMiRs did not yield a significant result (R*=0.20, Fy 1, = 1.46, p >0.167).

Relationships of CircaMiRs and CircaMicrobes with daily activities

Pearson’s correlation analysis was used to explore relationships between oscillating salivary
RNAs and three daily routines (sleep, tooth brushing, and eating) in sample set 3. Levels of 3
CircaMiRs and 5 CircaMicrobes were significantly (FDR<0.05) associated with time since last
sleep (measured in hours; Table 7). Levels of all five CircaMicrobes were inversely associated
with time since sleep, while 2/3 CircaMiRs were positively correlated with time since last sleep.
There were 4 CiraMiRs and 5 CircaMicrobes associated with time since last tooth brushing.
Levels of all five CircaMicrobes were inversely associated with time since last tooth brushing,
while 3/4 CircaMiRs were positively associated with time since last tooth brushing. MiR-200b-
3p was the single CircaMiR inversely associated with both sleep and tooth brushing. Notably,
expression patterns of miR-200b-3p were also hierarchically clustered with CircaMicrobe
expression (Fig 4). Two Prevotella and two Fusibacterium CircaMicrobes were associated with
both sleep and tooth brushing. There was only one CircaMicrobe positively associated with
time since last meal (and 0 CircaMiRs).

Discussion

In the present study, 61 total human miRNAs (CircaMiRs) and 11 total microbes (CircaMic-
robes) displayed consistent diurnal oscillations in saliva samples obtained from 9 different
children and adults collected across multiple days and times. From these, 11 miRNAs and 11
microbes were capable of accurately and reliably predicting time of sample collection. Diurnal
levels of five CircaMiRs and four CircaMicrobes were strongly associated with one another.
Functional analyses of the circadian RNA components displayed enrichment for numerous
signaling mechanisms, particularly metabolic pathways. However, CircaMiR and CircaMic-
robe levels were more strongly associated with sleep routines than with eating routines. This
may explain, partly, why levels of four CircaMiRs were “altered” in autistic children with disor-
dered sleep, relative to autistic peers without a sleep disorder and why a portion of these Circa-
MiRs target circadian mRNAs.

Table 6. Prediction of collection time in ASD children with normal sleep patterns (n = 63).

Variable T-stat P Power
hsa-miR-128-3p 1.824 0.074 0.432
hsa-miR-130b-3p 0.055 0.956 0.050
hsa-miR-140-3p -0.250 0.803 0.057
hsa-miR-142-5p 0.794 0.431 0.122
hsa-miR-181c-5p 0.489 0.627 0.077
hsa-miR-200b-3p -0.892 0.377 0.141
hsa-miR-22-5p -1.860 0.069 0.446
hsa-miR-221-3p -0.899 0.373 0.143
hsa-miR-345-5p -0.110 0.913 0.051
hsa-miR-629-5p -1.961 0.055 0.486
hsa-miR-8089 0.983 0.331 0.161

https://doi.org/10.1371/journal.pone.0198288.1006
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Table 7. Relationship between oscillating salivary RNA levels and timing of daily activities.

RNA Component

Microbial RNA

Falconid herpesvirus 1

Prevotella melaninogenica ATCC 25845
Haemophilus parainfluenzae T3T1
Veillonella parvula DSM 2008
Macrococcus caseolyticus JCSC5402
Fusobacterium nucleatum subsp. nucleatum 25586
Haemophilus

Fusobacterium nucleatum subsp. vincentii
Mason-Pfizer monkey virus
Campylobacter hominis ATCC

Prevotella

Human microRNA

miR-142-5p

miR-130b-3p

miR-629-5p

miR-140-3p

miR-128-3p

miR-181c-5p

miR-345-5p

miR-22-5p

miR-8089

miR-221-3p

miR-200b-5p
https://doi.org/10.1371/journal.pone.0198288.t007

Hours awake since last sleep Hours since last toothbrush Hours since last meal

R FDR T-stat R FDR T-stat R FDR T-stat
-0.48 0.00 -3.75 -0.18 0.36 -1.23 0.09 0.75 0.63
-0.39 0.03 -2.88 -0.50 0.00 -3.92 0.23 0.33 1.58

0.18 0.40 1.21 0.24 0.19 1.69 0.01 0.97 0.07
-0.36 0.05 -2.60 -0.15 0.44 -1.06 0.36 0.11 2.59
0.28 0.14 1.96 0.30 0.09 2.12 0.02 0.94 0.16
-0.57 0.00 -4.76 -0.61 0.00 -5.24 0.24 0.30 1.69
0.17 0.41 1.19 0.32 0.07 2.30 -0.04 0.90 -0.27
-0.46 0.01 -3.51 -0.50 0.00 -3.88 0.29 0.21 2.07
-0.35 0.05 -2.56 -0.18 0.36 -1.24 0.38 0.09 2.77
-0.24 0.22 -1.67 -0.47 0.00 -3.58 0.44 0.04 3.34
-0.47 0.01 -3.58 -0.60 0.00 -5.03 0.30 0.19 2.13
0.37 0.04 2.71 0.42 0.01 3.13 -0.16 0.53 -1.09
0.12 0.60 0.81 -0.04 0.87 -0.26 -0.22 0.34 -1.55
-0.04 0.88 -0.26 -0.29 0.11 -2.04 0.05 0.88 0.32
0.35 0.05 2.55 0.23 0.23 1.57 -0.35 0.12 -2.49
0.35 0.05 2.54 0.30 0.09 2.11 -0.35 0.12 -2.50
0.25 0.19 1.76 0.16 0.42 1.10 -0.37 0.09 -2.70
0.70 0.00 6.70 0.58 0.00 4.83 -0.38 0.09 -2.78
0.35 0.05 2.50 0.35 0.04 2.52 0.01 0.98 0.04
-0.01 0.96 -0.09 0.08 0.70 0.55 0.11 0.68 0.77
0.21 0.30 1.45 0.07 0.75 0.46 0.03 0.92 0.23
-0.44 0.01 -3.31 -0.43 0.01 -3.26 0.21 0.39 1.44

Six of the oscillating miRNAs identified in this study (miR-15b-3p, miR-24-3p, miR-106b-
3p, miR-140-3p, miR-150-5p, miR-203a-3p) were among the 26 plasma miRNAs previously
found to have diurnal variations in peripheral blood samples from healthy individuals [24].
These overlapping miRNAs from two distinct biofluids may represent either primary regula-
tory elements or primary readouts of circadian rhythmicity. This premise is supported by the
fact that levels of both miR-24-3p and miR-203a-3p are disrupted in the cohort of autistic chil-
dren with disordered sleep patterns. In addition, we found suggestive evidence that miR-203a-
3p was associated with sleep initiation difficulties (R = 0.20; p = 0.034). Another CircaMiR,
miR-142-5p, targets the clock gene RORA. Notably, miR-142-5p also displays correlated diur-
nal expression with its mRNA targets NAMPT (whose gene product modulates circadian
clock function by releasing the CLOCK/ARNTL/BMAL heterodimer [25]) and GRIN2B
(whose gene product encodes the NR2B subunit of the NDMA receptor essential to MAPK sig-
naling in the suprachiasmatic nucleus and CaMK II signaling in the hippocampus [26]). Nota-
bly, a well-described developmental switch from NR2A to NR2B subunit expression is
considered a hallmark of synaptic maturation that promotes memory formation, and elevation
in miR-142-5p (which would suppress NR2B expression) is associated with amyloid beta
pathology in postmortem brain samples of subjects with Alzheimer’s disease (AD) [27]. The
importance of this finding is highlighted by the fact that AD is associated with significant cir-
cadian pathology (e.g. “sundowning”) and that miR-142-5p restores normal synapse formation
and maturation (as measured by PSD95 expression) in differentiated neural cultures [28].
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Such a mechanism might even contribute to the recently described circadian oscillation in syn-
aptic spine number that has been described across different species, especially dendritic spines
on inhibitory neurons in multiple brain regions [29-31].

Circadian miRNAs found in both plasma and saliva may also direct diurnal physiologic
processes common to both peripheral biofluids. Indeed, mapping of KEGG pathway targets
for the six overlapping miRNAs reveals enrichment for broad signaling mechanisms such as
Wht Signaling, Rapl signaling, and Endocrine factor-regulated calcium reabsorption. This is
consistent with functional analysis of the 11 CircaMiRs, which also display enrichment for
Rap1 and other broad signaling processes (Ras, ErbB, PI3K-Akt, nTOR, MAPK). Salivary Cir-
caMiRs also demonstrate target enrichment for endocrine factors (estrogen and prolactin sig-
naling), which regulate peripheral physiologic processes in a circadian manner [32].

Unlike oscillating miRNAs in plasma, the CircaMiRs and CircaMicrobes in saliva appear
uniquely geared toward metabolic functions. CircaMiR targets display enrichment for lysine
degradation, choline metabolism, and insulin signaling (Table 3). The protein products of
these mRNA targets also exhibit enhanced biologic interaction in metabolism at the cellular
and macromolecule levels (S3 Table). Specifically, interactions between miR-130b-3p/ATXN?2,
and miR-142-5p/NAMPT (Table 4) may play important roles in regulation of host metabo-
lism, given that loss of function mutations in both ATXN2 and NAMPT are associated with
obesity and diabetes mellitus [33, 34].

Oscillating RNA expression within the oral microbiome also shows relationships with diur-
nal metabolism. Microbial RNAs appear to target KEGG and COG pathways in a diurnal man-
ner, by up-regulating RNAs involved in terpenoid biosynthesis, gluconeogenesis, pentose
phosphate pathways, and carbon fixation during the morning and afternoon time periods. In
comparison, pathways related to cell replication, nucleotide biosynthesis, and purine metabo-
lism demonstrate both morning and evening peaks. Thus, as a whole, the oral microbiome
may have evolved energy utilization patterns that capitalize on the timing of host meals to
extract biosynthetic materials and allow for night time replication. Interestingly, however, lev-
els of the 11 CircaMicrobes do not appear to correlate with time since last meal. Thus, these 11
individual entities may serve a more commensal function whose metabolic activities aid host
circadian rhythms. Indirect evidence for this may be found in the circadian rhythm of terpe-
noid biosynthesis (Fig 5A), a diverse class of hydrocarbons present in plant-based cannabi-
noids, or anti-inflammatory curcuminoids that play an essential role in steroid production
[35]. Given the well-established rhythmicity of steroid production, this is one mechanism by
which the microbiome may contribute to host circadian biology [36].

Further evidence for a synergistic relationship between CircaMicrobes and human hosts is
found in the strong associations among CircaMiR and CircaMicrobe expression (Fig 4). It is
somewhat surprising that CircaMiRs have few immune, or antimicrobial targets. However,
this may be because the circadian components of the oral microbiome serve a commensal
function. The majority of CircaMicrobes are not known to play pathogenic roles in human
hosts. Of the 11 CircaMicrobes, only three are distinct human pathogens (Haemophilus para-
influenza T3T1, Haemophilus, and Campylobacter hominis ATTC BAA-381) and none of
these three are associated with CircaMiR levels. Instead CircaMiRs may interact with the oral
microbiome to coordinate metabolic patterns, or production of essential amino acids. Perhaps
metabolic activity by the oral microbiome leads to changes in host miRNAs that regulate
downstream physiologic pathways.

To our knowledge this is only the second study to report consistent circadian rhythmicity
of peripheral miRNA expression in humans, and the first to do so in saliva. The importance of
this finding is underscored by the vast number of publications seeking to use peripheral
miRNA expression as a biological marker of human disease [37], a venture that could be
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greatly confounded by failure to control for time of collection. For example, among seven stud-
ies describing peripheral miRNA expression (saliva, serum, lymphoblasts [38]) in patients with
ASD, none have reported, or controlled for time of RNA collection. These studies have
reported a combined 139 ASD-related miRNAs. Notably, 10 of these (7%) overlap with the 61
CircaMiRs identified herein, which could represent confounded results. Future studies may be
able to utilize CircaMiR levels to control for circadian variation in miRNA expression or accu-
rately identify time of collection among biofluid samples.

The current study also adds to the growing body of literature that suggests miRNAs may
serve as a communication mechanism between the gut microbiome and human hosts [39].
Specifically, these results show how miRNA-microbiome cross-talk may occur in a circadian
manner. Given the diurnal rhythmicity of human metabolism, this finding has implications in
human health and disease. For instance, daily fluctuations in host-microbiome interaction
may inform risk for obesity, or insulin resistance (an enriched KEGG target of the 11 Circa-
MiRs). Alternatively, disruptions in miRNA-microbiome networks may unsettle the gut-
brain-axis, a concept implicated in diseases such as Parkinson’s [40] and ASD [41] (both of
which are associated with disordered sleep).

There are several notable limitations to this study that must be considered in interpreting
these findings. Detailed daily activity logs were available only for the participants in sample set
3. The remaining participants reported no medical co-morbidities (including disordered
sleep), though timing of sleep initiation and cessation were not recorded. Such information,
when recorded alongside physiologic measurements such as sleep architecture, or melatonin
flux could be extremely informative when interpreting RNA results in future studies. Nonethe-
less, the RNA expression patterns from participants in sample sets 1 and 2 were sufficient to
accurately predict collection time in a third independent sample set with documented sleep
wake cycles.

Notably, predictive performance in sample set 3 was somewhat impaired for the subset of
samples obtained at 4 AM. This may have resulted because the sinusoidal model created from
samples collected between 8 AM and 8 PM could not fully account for the overnight rhythmic-
ity that occurs in a sleep state. There may also be microbial variability introduced by differ-
ences in participant breathing patterns (e.g. open-mouthed versus nasal breathing) or fasting
during sleep. Certainly, a more controlled study which tightly dictated wake time, sleep initia-
tion time, diet, dental hygiene, and other factors could account for time of collection with
greater precision. However, the current results demonstrate that even in the face of typical var-
iability among daily routines, these 11 miRNAs and 11 microbial RNAs are remarkably accu-
rate predictors of time of saliva collection in four different cohorts of human subjects.

The accuracy of these results may even be underestimated given the broad age range (3-55)
of participants in sample sets 1, 2, and 3. The CircaMiR and CircaMicrobe candidates were
generated from 2 cohorts of children and validated in a cohort of teens and adults. This is
despite the fact that teens are known to have altered circadian rhythm compared with pre-teen
peers and adults[42]. Circadian RNAs from sample sets 1-3 also demonstrated significant rela-
tionships with collection time in a large cohort of children with ASD. Thus, the age and devel-
opmental diversity of these sample sets may be viewed as a confounding variable, but it likely
enhances the veracity of these results.

Finally, it should be noted that the RNAseq approach used to identify oral microbes and
estimate transcriptional activity of individual taxons differs from the typical 16S approach
used to measure microbial abundance. Thus, these results should not be interpreted as diurnal
fluctuations in the quantity of the oral microbiome, but rather as circadian variation in salivary
microbial activity. RNAseq and 16S measures are complementary (though not equivocal) and
could potentially add to the interpretive value of this approach in future studies. Such studies
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might also utilize animal models to explore the cellular origins of salivary CircaMiRs, and

investigate the mechanisms regulating CircaMiR production, transport, and degradation.

Manipulating the gut microbiome in this setting may also provide insights into microbial-
miRNA communication.

Parallel circadian oscillation in host and microbial RNA represents an important consider-
ation for studies analyzing epi-transcriptomic or metagenomic mechanisms in human health
and disease. Circadian rhythm disturbances are a common problem in disorders of the central
nervous system (e.g. Parkinson’s, Alzheimer’s, autism, depression, concussion [43]). Hence,
studies of peripheral miRNA expression in these conditions might consider how diurnal
miRNA expression patterns are shifted, rather than simply focusing on average miRNA levels
at a single collection point in comparison with a control cohort. Monitoring levels of these fac-
tors in biofluids like saliva could have diagnostic potential in diseases with altered circadian
rhythm and may one day provide a basis for targeted miRNA therapy of circadian disruptions.

Methods
Subject assessment

This study was approved by the Institutional Review Board for the Protection of Human Sub-
jects (IRB) at SUNY Upstate Medical University. Informed written consent was obtained for
nine healthy human volunteers, and verbal assent was provided by all participating children.

Study design

A prospective cohort design employing high throughput RNA sequencing was used to exam-
ine salivary RNAs (human and microbial) for daily oscillations in concentration (Fig 1). Nine
healthy participants (3-55 years of age) were divided into three groups, and provided multiple
saliva samples across a unique multi-day timeline (described below). Overlapping circadian
RNA candidates from the first two independent sample sets were validated in a third sample
set. Human miRNAs and microbial RNAs with confirmed diurnal variation were examined
for associations in expression levels. Relationships between oscillating miRNAs and coding
mRNA targets were also explored. Finally, the circadian RNA components were interrogated
for functional relevance to human health and disease with the following three steps: 1) mRNA
target networks for human miRNAs were identified in DIANA miRPath and Ingenuity Path-
way Analyst (IPA, Qiagen), while metabolic pathways targeted by microbial RNAs were
defined with MicrobiomAnalyst; 2) oscillating RN As were retrospectively interrogated in a
cohort of 140 children with autism spectrum disorder (ASD) with comorbid (n = 77), or
absent (n = 63) sleep disturbance; and 3) the relationship of diurnal salivary RNAs with daily
activities (tooth brushing, sleep, and eating) was assessed through Pearson correlation testing.

This study examined human miRNA and microbial RNA in saliva, because this biofluid
provides on-demand access to repeated sampling of the GI tract at its sole point of entry, and
represents a major site of host-environment interaction. Furthermore, studies of salivary
miRNA in human patients have previously shown connections with brain-related dysfunction
and potential relationships with time of collection [44, 45].

Participants

Participants included nine healthy volunteers, taking no daily medications, with no history of hos-
pitalization, surgery, or sleep disorder. None of the participants had active dental caries. The nine
participants were 3-55 years of age, 55% male, and 100% Caucasian. Participants provided saliva
samples at various times of day on repeated days in four different sets of samples:
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Sample Set 1: Morning and evening samples (n = 24) collected at approximately 9 AM and
9 PM on days 1, 3, and 7 for 4 children (two male, two female; average age 7.5 yrs);

Sample Set 2: Early morning, early afternoon, late afternoon, and early evening samples
(n = 48) collected at approximately 9 AM, 1:30 PM, 5:30 PM, and 9 PM on days 1, 5, 10 and 15
for three female children (average age 5.1 yrs), of whom two were part of Sample Set 1;

Sample Set 3: 12 samples collected at various times (ranging from 4 AM to midnight) on
days 1 and 2 on two male children (average age 16.0 yrs) and their male and female parents
(average age 51.5 yrs). Notably, detailed data regarding time of sleep, meals, and tooth brush-
ing was collected for participants in Sample set 3.

Sample Set 4: Functional analysis of circadian RNAs was performed through retrospective
analysis of data from an additional cohort of 140 children with ASD and comorbid sleep distur-
bance (n = 77), or normal sleep (n = 63). Salivary RNA was collected from these 140 children
(2-6 years of age) at a single time-point, between 8 AM and 8 PM in a non-fasting state. ASD
was confirmed through physician diagnosis, using the Diagnostic and Statistics Manual of the
American Psychiatric Association, 5" Edition (DSM-5) criteria. Disordered sleep was identified
through parent survey and chart review by research staff. Participants with disordered sleep had
either: 1) parent reported difficulty with sleep initiation or sleep maintenance; 2) ICD-10 diag-
nosis of disordered sleep (G47 or F51); or 3) a prescription for melatonin, clonidine, or mirtaza-
pine with indication as a sleep aid. There was no difference in mean collection time between
ASD subjects with (12:30PM = 2:48) and without (1:00PM =+ 3:00) disordered sleep (p = 0.34).
The sleep disorder group was 18% female (14/77) and had a mean age of 56 (+16) months. The
non-sleep disorder group was 14% female (9/63) and had a mean age of 56 (+ 13) months.

Saliva collection and processing

Before collecting saliva samples, each subject rinsed their mouth with tap water. Approxi-
mately 1 mL of saliva was obtained through swab collection using an Oragene RNA collection
kit (DNA Genotek; Ottawa, Canada). Samples were stored at room temperature until process-
ing. A Trizol method was used to purify the salivary RNA and a second round of purification
was followed using an RNEasy mini column (Qiagen). Yield and quality of the RNA samples
was assessed with the Agilent Bioanalyzer. This was done prior to library construction in
accordance to the Illumina TruSeq Small RNA Sample Prep protocol (Illumina; San Diego,
California). Identification and quantification of saliva miRNA and microbial RNA was per-
formed using next generation sequencing (NGS) on a NextSeq 500 instrument (Illumina), fol-
lowing the TruSeq Small RNA Library Preparation Kit protocol (Illumina, San Diego, CA).
Alignment of mature miRNA reads was performed with the miRbase21 database using the
Shrimp?2 algorithm in Partek Flow software (Partek, Inc., St. Louis, MO). Mapping of unique
microbial transcripts was performed using the K-Slam database, which references the NCBI
Taxonomy database [46]. Taxons were defined by their family, genus, species, and subspecies
(when available). The human miRNAs and microbial RNAs present in raw counts of 10 or
more in at least 10% of samples were interrogated for oscillating expression. A quantile nor-
malization technique was applied to the human miRNA and microbial RNA datasets sepa-
rately, prior to statistical analysis.

Identification of oscillating salivary RNAs

A two-way analysis of variance (ANOVA) was performed using sample sets 1 and 2 based on
binning the samples into their approximately replicated collection times, to identify host miR-
NAs and microbial RNAs that varied significantly (FDR<0.05) with collection time but not
the day of collection (in order to eliminate RNAs which could be influenced by daily variations
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in routine). A subset of miRNAs and microbial RNAs that were highly associated with time of
collection (R > 0.90 or 0.84 in sample sets 1 and 2, respectively; p<0.001) were then used in a
naive hold-out set (sample set 3) to assess predictive accuracy for time of collection with a mul-
tivariate regression analysis. The miRNAs that showed the strongest circadian oscillations
were termed CircaMiRs and the microbes that displayed the strongest oscillations in transcrip-
tional activity were termed CircaMicrobes. Relationships between CircaMiRs and CircaMic-
robes were investigated with a Pearson Correlation analysis.

Functional Interrogation of CircaMiRs and CircaMicrobes

Classification of the mapped microbial RNAs within defined metabolic and functional catego-
ries was performed through conversion of microbial reads to Kyoto Encyclopedia of Genes
and Genomes (KEGG) Orthology identifiers (KO IDs) which were mapped by MicrobiomeA-
nalyst software[47] to a set of 202 different KEGG Modules, KEGG Pathways, and COG Cate-
gories. For each participant, KEGG and COG data were summed across four collection
periods (i.e. 7-9 AM, 10 AM-2 PM, 3-6 PM, 7-10 PM) for all of the days saliva samples were
collected. Changes in expression of individual functional clusters were explored with a non-
parametric Kruskal Wallis ANOVA. Patterns in functional clusters across the four time peri-
ods were visualized with hierarchical clustering analysis and a partial least squares discrimi-
nant analysis in MetaboAnalyst software.

The potential biologic impact of the CircaMiRs was investigated through functional annota-
tion of their high confidence mRNA targets (p<0.05, Micro-T Score > 0.95) in DIANA miR-
Path v3 software and Ingenuity Pathway Analyst software (IPA, Qiagen). KEGG pathways
over-represented by these mRNA targets were determined with Fisher’s Exact test with FDR
correction (FDR<0.05). Inter-relatedness of protein products for the mRNA targets was
explored in String v10.5. Alignment of salivary RNA to the RefSeq Transcripts database in Par-
tek Flow permitted quantification of local (oropharyngeal) mRNA targets for salivary Circa-
MiRs (that were < 50 base pairs). Relationships between CircaMiRs and mRNA targets were
explored with Pearson’s correlations.

To further explore the potential biological significance of the miRNA data, we examined
the levels of the oscillating salivary CircaMiRs in the same cohort of 2-6 year old children with
ASD examined for miRNA expression who either had normal sleep patterns (n = 63) or disor-
dered sleep symptoms (n = 77). Group differences in mean salivary CircaMiR expression
between the sleep disorder and non-sleep disorder groups were identified with a non-paramet-
ric Mann Whitney U-test. A two-way ANOVA assessed relationships between CircaMiRs,
disordered sleep, and collection time, as well as sleep disorder-time interactions. Finally, a mul-
tivariate linear regression was used to determine the ability of the most robust CircaMiRs to
predict collection time in the ASD children with and without sleep disorders.

Influence of daily routines on the oral transcriptome

To investigate the potential impact of daily routines on salivary miRNA and microbial RNA
levels we examined associations between the oral transcriptome in sample set 3 and: 1) time
since last meal (in hours); 2) time since last tooth brushing (in hours); and 3) time since last
sleep (in hours). Significant relationships (|R|>0.40; FDR<0.05) between these three variables
and salivary RNA levels were reported.

Supporting information
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(XLSX)
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