Brain Death Declaration and Organ Donor Management

Accountability · Quality · Excellence

Galyn Schoentein, Assoc Director of Organ Recovery Services

Diagnosing and Declaring Brain Death

Uniform Determination of Death Act

An individual who has sustained either:

(1) irreversible cessation of circulatory and respiratory function

or

(2) irreversible cessation of all functions of the **entire brain**, including the **brain stem**, is dead. A determination of death must be made in accordance with accepted medical standards.

JAMA Nov 13, 1981 - Vol 246, No. 19

Etiology of Brain Death

- Severe head trauma
- Aneurismal subarachnoid hemorrhage
- Cerebrovascular injury
- Hypoxic-ischemic encephalopathy
- Fulminant hepatic necrosis
- Prolonged cardiac resuscitation or asphyxia
- Tumors

Diagnosis of Brain Death

- Brain death is a *clinical diagnosis*. It can be made without confirmatory testing if you are able to establish the etiology, eliminate reversible causes of coma, complete fully the neurologic examination and apnea testing.
- The diagnosis requires demonstration of the absence of both cortical and brain stem activity, and demonstration of the irreversibility of this state.

R. Erff, D.O., Walter Reed Army Medical Center

Prerequisites to the Diagnosis

- Evidence of acute CNS catastrophe compatible with brain death:
 - Clinical or Neuroimaging
- Exclusion of reversible medical conditions that can confuse the clinical assessment:
 - Severe electrolyte, acid base and endocrine disturbance
 - Absence of drug intoxication and poisoning
 - Absence of sedation and neuromuscular blockade
 - Hypotension (suppresses EEG activity and CBF)
 - Absence of severe hypothermia (core temp < 32 C)

Brain Stem Reflexes

Cranial nerve examination:

- No pupillary response to light. Pupils midline and dilated 4-6mm.
- No oculocephalic reflex (Doll' s eyes) contraindicated in C- spine injury.
- No oculovestibular reflex (tonic deviation of eyes toward cold stimulus) contraindicated in ear trauma.
- Absence of corneal reflexes
- Absence of gag reflex and cough to tracheal suction.
- Absence of facial muscle movement to a noxious stimulus.

Apnea Testing

Once coma and absence of brain stem reflexes have been confirmed, Apnea testing should be performed.

- It verifies loss of most rostral brain stem function
- Confirmed by PaCO2 > 60mmHg and PaCO2 > 20mmHg over baseline value with acidosis
- It can cause hypotension, severe cardiac arrhythmias and elevated ICP. (Therefore, apnea testing is performed last in the clinical assessment of brain death.)

Consider **ancillary tests** if the apnea test is inconclusive.

Apnea Testing Pre-Requisites

Following conditions **must** be met before the apnea test can be performed:

- Core temp > 32.0 C (90 F)
- Systolic blood pressure > 90mmHg
- Euvolemia
- Corrected diabetes insipitus
- Normal PaCO2 (PaCO2 35 45 mmHg)
- Preoxygenation (PaO2 > 200mmHg)

Ancillary Testing

- *Purely optional* when the clinical criteria are met unambiguously.
- A confirmatory test is needed for patients in whom specific components of clinical testing cannot be reliably evaluated
 - Coma of undetermined origin
 - Incomplete brain stem reflex testing
 - Incomplete apnea testing
 - Toxic drug levels
 - Children younger than 1 year old.
 - Required by institutional policy

Types of Ancillary Tests for Brain Death Determination

- Cerebral Blood Flow (CBF) Studies
 - Cerebral Angiography
 - Nuclear Flow Study
- EEG (when brain scan is not utilized)

Elements needed for a brain death declaration/death note

- Date and Time of Death
- Detailed documentation of Clinical Exam including specifics of Apnea Testing
- Physician signature

Donor Management post Brain Death

- Therapy shifts in emphasis from cerebral resuscitation to optimizing organ function for subsequent transplantation.
- The normal sequelae of brain death results in cardiovascular instability & poor organ perfusion
- Medical staff must focus on:
 - Providing hemodynamic stabilization.
 - Support of body homeostasis.
 - Maintenance of adequate cellular oxygenation and donor organ perfusion.
- Without appropriate intervention brain death is followed by severe injury to most other organ systems. Circulatory collapse will usually occur within 48hrs.

Donor Management Goals (DMG)

- MAP 60-110 mmHg
- HR 60-140 beats/min
- CVP 4-12 mmHg
- PAWP 7-12 mmHg
- Serum electrolytes WNL
- CBC and coags WNL
- SPO2 >95%
- pH 7.35-7.5
- PF ratio >300
- U/O 1-3 cc/kg/hr
- </= 1 pressor used

NORMAL PARAMETERS!!

NEVADA DONOR NETWORK

What to Expect after Brain Death

- Pathophysiology Changes: Loss of **brain stem function** results in systemic physiologic instability
 - Loss of vasomotor control leads to a hyper-dynamic state.
 - Cardiac arrhythmias, stunned myocardium
 - Loss of respiratory function Atelectasis, bronchospasm, bronchial edema, hydrostatic fluid column pressing into lungs
 - Loss of temperature regulation Hypothermia and Hyperthermia
 - Hormonal imbalance Lack of endogenous ADH and resultant DI, lack of TSH

Incidence of pathophysiologic changes following Brain Death:

•	Hypotension	81%
•	Diabetes Insipidus	65%
•	DIC	28%
•	Cardiac arrhythmias	25%
•	Pulmonary edema	18%
•	Metabolic acidosis	11%

Autonomic/Sympathetic Storm

- Release of catecholamines from adrenals (Epinephrine and Norepinephrine) results in a hyper-dynamic state:
 - Tachycardia
 - Elevated C.O.
 - Vasoconstriction
 - Hypertension

Pituitary Gland Failure

Failure of the Hypothalamus will lead to problems with the pituitary gland

- ADH ceases to be produced leading to Diabetes Insipidus
- Can lead to hypovolemia and electrolyte imbalances
- Leads to problems with the thyroid gland

Thyroid Gland Failure

- The thyroid is responsible for the production of the hormones (T3 and T4) that increase the metabolic rate and sensitivity of the cardiovascular system.
- When the thyroid fails, it can lead to:
 - Cardiac instability
 - Labile blood pressure
 - Potential coagulation problems

Disseminated intravascular coagulation (DIC)

- 90% of head injured patients will develop DIC if they become hypothermic (<30 C). Otherwise DIC will occur in fewer (25%) of donors
- DIC may persist despite factor replacement requiring early organ recovery
- Affected by hypothermia, release of catecholamines & hemodilution as a result of fluid resuscitation
- The following are indications of DIC:
 - prolonged PT
 - prolonged PTT
 - decreased platelet count
 - decreased fibrinogen level (<150 mg/dl)
 - decreased hemoglobin
 - bleeding

Neurogenic Pulmonary Edema

- Brain death is associated with numerous pulmonary problems
- The lungs are highly susceptible to injury resulting from the rapid changes that occur during the catecholamine storm
- Left-sided heart pressures exceed pulmonary pressure, temporarily halting pulmonary blood flow
- The exposed lung tissue is severely injured, resulting in interstitial edema and alveolar hemorrhage, a state commonly referred to as *neurogenic pulmonary edema*

Organ Donor Management

The following is what the Organ Coordinators focus on:

- Hypertension \rightarrow Hypotension
- Excessive Urinary Output
- Impaired Gas Exchange
- Electrolyte Imbalances
- Hypothermia

Cardiovascular System

- "Rules of 100's"
 - Maintain SBP > 100mmHG
 - HR < 100 BPM
 - UOP > 100 ml/hr
 - PaO2 > 100mmHg
- Aggressive fluid resuscitative therapy directed at restoring and maintaining intravascular volume. SBP > 90mmHg (MAP > 60mmHg) or CVP ~ 10 mmHg.

Hypotension Management

- Fluid Bolus NS or LR
 - Followed by MIVF .9 NS, .45 NS or .2NS
- Colloids 5% or 25% Albumin, Hespan
- Inotropes
- Vasopressin
- Levothyroxine (T4 protocol)

T4 Protocol

Reason for use:

- Brain death leads to sudden reduction in circulating pituitary hormones
- May be responsible for impairment in myocardial cell metabolism and contractility which leads to myocardial dysfunction
- Severe dysfunction may lead to extreme hypotension and loss of organs for transplant

T4 Protocol Mixture

Bolus:

- 2 gm Solumedrol STAT
- 20 mcg T_4 (Levothyroxine) STAT
- 20 units of Regular Insulin IV STAT
- 1 amp $D_{50}W$ IV STAT
- Pull 50 mL of T4 mixture and give IV push

Infusion:

- 500 mcg T_4 in 500 cc D5W (1:1 mix)
- Run at 10 mcg/hr (10 cc/hr), increase as needed by increments of 10 mcg/hr.
- Titrate to keep SBP >100

Diabetes Insipidus

Symptoms:

- Polyuria
- Serum sodium > 150 mEq/L
- Serum osmolality >310 mmol/L
- Urine osmolality < 300 mmol/kg
- Urine Specific Gravity < 1.005
- Leads to electrolyte depletion/instability <u>monitor</u> <u>closely</u> to avoid hypernatremia and hypokalemia

Donor Management:

- Vasopressin drip 0.5-2 units hr
- Hypotonic MIVF
- Free water bolus down NG/OG tube
- Electrolyte replacement

Impaired Gas Exchange and Maximize Oxygenation

- Most organ donors are referred with:
 - Chest trauma
 - Aspiration
 - Long Hospitalization with bed rest resulting in atelectasis or pneumonia
 - Impending Neurogenic Pulmonary Edema
- Brain Death contributes to and complicates all of these conditions...

Impaired Gas Exchange Goals...

- To maintain health of lungs for transplant while optimizing oxygen delivery to other transplantable organs
- Avoid over-hydration
- Ventilatory strategies aimed to protect the lung
- Avoid oxygen toxicity by limiting Fi02 to achieve a Pa02 100mmHg & PIP < 30mmHg.

NEVADA DONOR NETWORK

Impaired Gas Exchange Management

- Maintain PaO2 of >100 and a saturation >95%
- Monitor ABG's q4h or as requested by OPO
- PEEP 5 cm, HOB up 30°
- Increase ET cuff pressure immediately after BD declaration
- Aggressive pulmonary toilet (Keep suctioning & turning q2h)
- CXR (Radiologist to provide measurements & interpretation)
- Bronchoscopy w/ Sputum GS, Cx, AFB and Fungal Cx
- CT of chest requested in some cases

Electrolyte Imbalance Management

Hypokalemia

• If K+ < 3.4 – Add KCL to MIVF (anticipate low K+ with DI & T4 administration)

Hypernatremia

• If NA+ >155 – Change MIVF to a more hypotonic solution, Free water boluses down NG tube (this is often the result of dehydration, NA+ administration, and free water loss secondary to diuretics or DI)

Calcium, Magnesium, and Phosphorus

• Deficiencies are common...often related to polyuria associated with osmotic diuresis, diuretics & DI.

Hypothermia Management

- Monitor temperature continuously
- NO tympanic, axillary or oral temperatures. Central only.
- Place patient on hypothermia blanket to maintain normal body temperature
- In severe cases (<95 degrees F) consider:
 - covering patient's head with blankets
 - hot packs in the axilla
 - warmed IV fluids

Making The "U-Turn"

When a patient dies, despite best efforts, organ donation becomes a positive outcome to a tragic situation.

Questions??

