

 \geq

Starting with THERCAST® Continuous casting

With THERCAST®, simulate how the metal evolves in a casting installation from the mold to exiting secondary cooling!

Covering three days, this course will be your first approach to THERCAST[®] software for continuous casting applications.

The first day lets you understand all of the data setup phases with special attention devoted to building the casting machine. The second day will highlight the different kinds of computations as well as how to analyze the main results.

Lastly, a number of key functions will be covered like identifying internal defects, predicting segregation, using TTT diagrams, point tracking and customizing the working environment.

LEVEL

Beginner

PREREQUISITES

There are no prior requirements for this course.

GOALS

- Data setup for continuous casting
- Launching a single computation and/or a computation sequence
- Analyzing simulation results
- Using the continuous casting machine definition interface
- Studying the entire process (primary and secondary cooling)
- Identifying and interpreting casting faults (bulging, cracks, etc.)
- Studying variations in physical values (temperature, pressure, etc.) at any point in the cast product (slab, bloom)
- Customizing your working environment

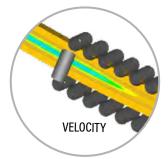
TRAINING	DURATION	PRICE EXCL. TAX	PARTICIPANTS
In-company	3 Days	3900€ per training	1 to 3 people

Contact us to arrange the date and place of the training.

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m. Transvalor presentation Introduction Course goals - Working environment presentation · Project concept with case and stage management **Graphic environment** · Full description of the backstage · Creation of a material from its nominal composition Material file manager - Managing the unit system tool - Displaying physical properties - Generation data for computations with segregations · Visualizing elements concentration micro and macro-scale segregation **Segregation models** Introduction to micro-segregation models

	Building continuous casting machine: Surface and volume meshing
Tutorial case - continuous	Managing simulation check parameters
casting	Reviewing heat and friction exchanges between ranges
	Reviewing fault prediction criteria

DAY 2 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.


Launching computations	 Quick launch Procedure for restarting computations 	
Result analysis	 Displaying scalar results: temperature, liquid fraction, material front, etc. Display options: iso-volumes, cutting planes, curves, scales, smoothed or continuous representations, etc. Identification of sensitive areas (shrinkage, porosity, etc.) Combined analyses: multi-cases, multi-windows options Exploitation of results: animations, VTFx exports 	
Industrial case	Data setup and launching computation	

DAY 3 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Industrial case result analysis	· · · · · · · · · · · · · · · · · · ·	
Functions	 Pre- and post-processed sensors Hot tearing criteria 	
Advanced notions	 Remeshing TTT and TRC diagram Customizing environment: materials, heat exchange, friction, etc. 	
Conclusions	Questions and course assessment	

SEGREGATION

YAMANAKA CRITERION

H