

Starting with Z-set

This training is an introduction to structural analysis with Z-set, software for the calculation and analysis of non-linear structures and materials.

This introductory course gives a quick and comprehensive introduction to the applications of Z-set software. It is recommended to engineers who are willing to use Z-set as a finite element solver for the simulation of general non-linear thermomechanical problems.

This one-day training provides basic knowledge about the workflow and setup steps to perform nonlinear structural analyses with Z-set.

Questions about the Zebulon FE solver will be answered.

LEVEL

Beginner

PREREQUISITES

Good basic knowledge of Finite Element Analysis

GOALS

- Understanding of Z-set's simulation workflow
- Data setup for non-linear structural analysis
- Launching computations
- Results visualization, interpretation and analysis
- Performing simple post-processing analyses

TRAINING	DURATION	PRICE TAXES NOT INCL.	PARTICIPANTS
In-company	1 day	1400€ per training	1 to 3 people

Contact us to set the course date and location.

H

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	 Transvalor presentation Course goals 	
Simulation workflow and setup	 Quick review of software installation (Linux, Windows), environment variables Presentation of Z-set's distribution (documentation, tests base) Presentation of software modules and specific input files (mesh, material file, main simulation input file, post-processing input file) Running commands, keywords (-m, -pp) Mesh generation with Z-master, mesh import Detailed presentation of Zebulon input file Prescribing boundary conditions Rheology, material card, material data Output controls Application to tutorial cases (2D, 3D, linear, nonlinear) 	Simulation of fatigue crack growth in an Isogrid Panel (collaboration with AIRBUS and Constellium)
Computation	 Quick launch, multicore execution Computation restart procedure 	
Results analysis	 Results files Results visualization: displacements, reactions, Von Mises, material variables Basic data extraction (nodal values, visualization on element sets) Visualization of curves, animations Results postprocessing (simple example) 	Plastic torsional buckling of a thin-walled tube
Conclusions	Questions and course assessment	

H