

Starting with Z-cracks

Do you want to learn how to analyze fatigue cracks? Would you like to accurately predict crack paths and propagation kinetics? Discover how to use Z-cracks, the module for 3D fracture mechanics simulation.

This one-day training course is intended to engineers and researchers who already have relevant experience in fracture mechanics. The goal of this training is to demonstrate

the capabilities of the Z-cracks module to perform static crack analysis and crack propagation simulations.

LEVEL

Beginner

PREREQUISITES

Good basic knowledge of fracture mechanics.

GOALS

- · Understanding of Z-cracks' principles and simulation workflow
- · Setup of static crack and crack propagation simulations
- Launching computations
- · Results visualization, interpretation and analysis
- Introduction to advanced user capabilities

TRAINING	DURATION	PRICE TAXES NOT INCL.	PARTICIPANTS
In-company	1 day	1400€ per training	1 to 3 people

Contact us to set the course date and location.

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

 Quick review of software installation (Linux, Windows), environment variables, connection to external FE solvers Presentation of Z-set distribution (documentation, tests base) Running scripts Presentation of Z-cracks' GUI and main principles
 Getting started: importing models Crack definition and insertion, remeshing principles and strategies Stress intensity factors: setup of SIF analysis Propagation analysis: setup and propagation laws Z-cracks' scripts presentation Application to tutorial cases
 Computation Launching simulations, multicore execution Computation restart procedure
 Results files Results visualization, curves visualization Results merging and animations
- Advanced options - Non-linear material models - Contact between cracks lips - User propagation laws - Complex loading histories - Scripts for automated simulations
Conclusions - Questions and course assessment

Numerical simulation of a cracked combustion chamber under thermomechanical fatigue loading

