Starting with Z-cracks Do you want to learn how to analyze fatigue cracks? Would you like to accurately predict crack paths and propagation kinetics? Discover how to use Z-cracks, the module for 3D fracture mechanics simulation. This one-day training course is intended to engineers and researchers who already have relevant experience in fracture mechanics. The goal of this training is to demonstrate the capabilities of the Z-cracks module to perform static crack analysis and crack propagation simulations. ### **LEVEL** Beginner ### **PREREQUISITES** Good basic knowledge of fracture mechanics. #### **GOALS** - · Understanding of Z-cracks' principles and simulation workflow - · Setup of static crack and crack propagation simulations - Launching computations - · Results visualization, interpretation and analysis - Introduction to advanced user capabilities | TRAINING | DURATION | PRICE TAXES NOT INCL. | PARTICIPANTS | |------------|----------|-----------------------|---------------| | In-company | 1 day | 1400€ per training | 1 to 3 people | Contact us to set the course date and location. ## **DAY 1 >** 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m. | Quick review of software installation (Linux, Windows), environment variables, connection to external FE solvers Presentation of Z-set distribution (documentation, tests base) Running scripts Presentation of Z-cracks' GUI and main principles | |--| | Getting started: importing models Crack definition and insertion, remeshing principles and strategies Stress intensity factors: setup of SIF analysis Propagation analysis: setup and propagation laws Z-cracks' scripts presentation Application to tutorial cases | | Computation Launching simulations, multicore execution Computation restart procedure | | Results files Results visualization, curves visualization Results merging and animations | | - Advanced options - Non-linear material models - Contact between cracks lips - User propagation laws - Complex loading histories - Scripts for automated simulations | | Conclusions - Questions and course assessment | Numerical simulation of a cracked combustion chamber under thermomechanical fatigue loading