

Starting with SIMHEAT®

The time has come to discover the latest software in the Transvalor suite devoted to heat treatment processes: SIMHEAT® and the extent of its possibilities. After this course, you'll be able to get the most out of the product!

This training is your first approach to the SIMHEAT® software. The first day gives you an understanding of all of the data setup steps, how to create material files and TTT diagrams, the procedure for launching computations and how to analyze the main results. Day two will be devoted to a more thorough analysis of a complete panel

of results for better interpretation of the physical phenomena. Key functions will be covered such as treatments for aluminum and heat treatments via induction as well as surface treatments.

Customizing your working environment will then be covered.

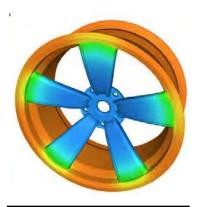
LEVEL

PREREQUISITES

GOALS

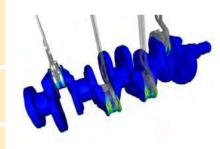
- · Discovering the interface for data set up and report analysis
- Creating your own TTT diagram using SIMHEAT®
- Data set up in the case of heat treatment of a forged or cold-formed part or coming from a foundry process
- Running a computation and analyzing the simulation results
- Defining the process conditions in order to obtain the best mechanical properties
- · Be able to predict the microstructure changes during heating or cooling
- Observing the influence of the diffusion of carbon on the changes in surface hardness
- Determining the ideal treatment conditions in order to reduce cycle times

TRAINING	DURATION	PRICE EXCL. TAX	PARTICIPANTS
In-company	2 Days	2600€ per training	1 to 3 people


Contact us to arrange the date and place of the training.

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	Transvalor presentation Course goals	
Data setup	 Working environment presentation Concept of stores, processes, cases and steps Importing geometries and *.UNV files Surface and volume meshing Thermal exchanges Object handling (creation, trimming) Starting computation 	
General	Fe-Fe3C diagram Reminder of TTT and TRC diagrams	
Modeling quenching	 Approximating the TRC diagram using the TTT diagram Exercise: generating TTT and TRC diagrams with FORGE® Multi-physical coupled model Exercise: model quenching in different baths (Houghton oils, polymer solutions) Exercise: quenching via sprays 	
Result analysis	 Displaying results, the main scalars and vectors Curve patterns, animations, VTFx exports Multi-window analysis Management of animations and exporting results 	
Heat treatments	 Modeling quenching – QFA model (Quench Factor Analysis) Hardening via aluminum precipitation (artificial aging) - Shercliff-Ashby model 	


Surface heat treatment (carburizing, quenching, tempering)

Hardening via aluminum precipitation (artificial aging)

DAY 2 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Austenitizing	 Generation of material composed of perlite and ferrite Definition of the heating cycle Report analysis: phase transformation, austenite content, optimizing the heating cycle
Carburizing	 Generating anisotropic meshing Defining the carbon content TTT diagram according to the carbon content Result analysis: carbon content, phase transformation, hardness
Tempering	 Model used to determine hardness Exercise: modeling of tempering after quenching Result analysis: residual stresses, hardness, etc.
Optimization	Basic optimization principle Determining exchange coefficient thanks to reverse analysis
Working environment customization	Creating specific models and specific data sets (materials, heat exchanges, etc.)
Conclusion	Questions and course assessment

Induction heating of a crankshaft