

REM3D[®] - Foam molding

Start the REM3D® experience and simulate your foam molding processes. This way you will be one step ahead when it comes to understanding physical phenomena and you can aim to better optimize your current processes.

This course constitutes your first approach to REM3D® software for the PU foam injection molding process. From examples inspired by industrial applications, you will cover the various aspects of foam filling and expansion. You will learn all of the necessary stages starting with setup, then starting the simulation and wrapping up with an analysis of results. During the first day, you will have

the opportunity to review the essentials on chemical foam work and you will understand how to use the wealth of functions such as sensors or isovolumes.

The second day will be devoted to a more in-depth study of industrial cases illustrating how variations in process conditions influence mold optimization and cycle times.

LEVEL

PREREQUISITES

There are no prior requirements for this course.

GOALS

- Data setup for a PU foam molding case
- Launching a computation on a multi-core machine
- Analyzing results
- Identifying and interpreting injection-expansion faults (underfilling, etc.)
- Monitoring physical values (temperature, density, etc.) at any point on the part
- Testing the influence of process parameters (injected mass, flow rate, gate position, regulation temperature, etc.)
- Understanding how to characterize PU foams

	TRAINING	DURATION	PRICE EXCL. TAX	PARTICIPANTS
	In-company	2 Days	2600€ per training	1 to 3 people
< l>				

Contact us to set the course date and location.

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	Iransvalor presentation Course goals	Appliance application	
Data setup	 Finite element principle Project concept Importing geometries Surface and density meshes Defining process parameters: flow rate, injection point, temperature, etc. Defining the material: temperature, rheology Defining the mold: temperature, properties Defining the symmetry plane Defining Eulerian or Lagrangian sensors: monitoring material points and saving some result fields Managing simulation parameters: Time increment, storage time Stop criteria: maximum time, maximum temperature, etc. 		
Modeling the polyurethane foam	 General chemical reaction principles Modeling injection and expansion phases Experimental characterization resources 		
Tutorial case	 Setup for a mini refrigerator case Starting computation - Quick start - Batch manager First analysis 		
Analyzing results	 Displaying results: density, foam front, temperature, etc. Isovolume, isosurface and vectors Curve patterns, animations, VTFx export 	Automotive application	
Customer case	Data setup and launching computation		

DAY 2 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Analyzing results from a customer case	 Analyzing and interpreting results: changes in density, gas levels, temperature evolution Graphic analyses: injected mass, flow rate, vent air flow, etc. 	
Influence of process parameters	 Foam distribution Regulating cooling Positioning vents Balancing mold and incline 	
Advanced notions	AAA (Automatic, Anisotropic, Adaptive) remeshing	
Lab visit if the training is at Transvalor	 Presentation of the foam characterization machine Introduction to the characterization via Transfoam (avec une puce devant) 	Displaying the expansion phase
Conclusions	Questions and course assessment	

Transvalor 63

H.