

Die analysis

How to estimate the level of stress in the dies? How to extend the lifetime of your dies? How to assess temperature changes in your dies? If you want to learn more about die analysis, then this course is for you!

Tooling costs represent up to 15% of the total forging cost. Extending the service life of dies is an ongoing challenge for producing more parts using the same dies and lowering production costs. After this failure. For hot forging, you will master the prior to manufacture them!

steady state approach and you will be able to determine the die temperature after a number of forging operations.

For cold forging, you will know how to model prestressed dies (assembled by course, you will be able to assess wear, interference fit) and optimize shrinkage. quantify the deformation affecting your Based on industrial examples, this course matrices and predict premature matrix allows you to improve dies design even

LEVEL

Intermediate - Users wishing to enhance their knowledge of die analysis.

PREREQUISITES

A good grounding in the use of FORGE® is a requirement.

GOALS

- Simulating die mechanical and thermal behavior
- (failure, deterioration due to fatigue)
- Analyzing and interpreting computation results (wear, stress, etc.)

OTHER RECOMMENDED COURSES

- FORGE® Automatic optimization
- FORGE® Heat treatment of steel and aluminum

DURATION		DATES 2022	
2 Days	08-09 April	10-11 August	02-03 December
TRAINING		PRICE EXCL. TAX	PARTICIPANTS
Inter-company		1400€ per person	3 to 8 people
In-company		2600€ per training	1 to 3 people

3

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	Transvalor presentation Course goals
Rigid tool	 Why this kind of computation? Recommendations for meshing the surfaces of 2D/3D dies Analysis of the results of forging simulations with 2D/3D rigid dies
computations	(abrasive wear, normal stress, etc.)
Uncoupled	 Recommendations for volume meshes of 2D/3D dies Setup Analyses of additional results on 2D/3D tooling
computations	(Von Mises stress, principal stresses)
Coupled computations	 Why this kind of computation? Defining Master-Master and Master-Slave contacts 2D/3D setup Analyzing results (stress, temperature) Options in coupling computations

Maximum effective stress observed in the fillet radii

DAY 2 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Uncoupled and coupled computations comparisons	 Material flow Normal stress Abrasive wear Von Mises stress Die deformation Forging load Choosing the type of computation
Prestressed dies	 Defining the prestress concept Deformable die interpenetration in 2D mode Virtual Interference Fit in 3D (VIF) Setup Viewing and interpreting results
Steady state	 Concept Setup Viewing and interpreting results
Archard's wear model	 Description of the model Setup Comparing results with the 'standard' abrasive wear model
Conclusions	Questions and course assessment

Abrasive wear on a punch when forming a constant velocity joint