

Automatic optimization

You need to optimize your process? Discover the solutions for identifying an ideal billet for complete and flawless filling or a tooling design that minimizes stress. No more long and boring trial plans. Choose automatic optimization!

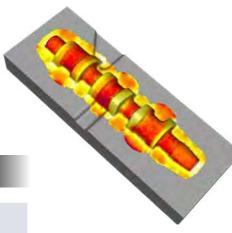
FORGE® automatic optimization is an extremely effective tool.

Thanks to its genetic algorithm, you can automatically vary an entire range of process parameters (billet dimensions, tool shapes, billet positioning, etc.). This way you will be able to identify the best

conditions for optimally forming your part. In addition, you will study parameter identification techniques using reverse analysis as well as couplings with CAD environments for designing blockers and tooling.

LEVEL

Advanced - Users seeking to master automatic optimization principles so as to achieve reliable and efficient use.


PREREQUISITES

A good grounding in the use of FORGE® is a requirement. A perfect knowledge of the process is essential to determine what you want to optimize and how. You need to know the chaining and transitions concepts.

GOALS

- Understanding optimization concepts and terms: genetic algorithm (individuals and generations), minimizable, stress and configured action
- Optimizing industrial processes
- Reducing billet volume and finished part faults
- Identifying parameters by reverse analysis
- Coupling optimization with CAD (PTC Creo Parametric and SolidWorks)

DURATION	DATES		
1,5 Days	04-05 March	29-30 June	04-05 November
TRAINING		PRICE EXCL. TAX	PARTICIPANTS
Inter-company		1050€ per person	3 to 8 people
In-company		2250€ per training	1 to 3 people

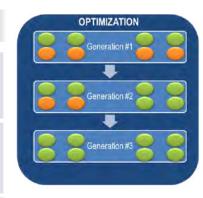
DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	Transvalor presentationCourse goals
Reminders on chaining	Chaining conceptTransitions2D & 3D chaining
General concepts	 Automatic optimization concept Individuals and generation notions Definition of a minimizable Definition of a constraint Definition of configured actions
Optimizing the 2D billet volume	Setup Analyzing optimization results
Optimizing a 3D rolled blocker	 Setup Launching computation Analyzing optimization results
Determining a friction factor	Defining the caseSetupInterpreting the results

Original design (in red) vs Optimized design (in blue)

DAY 2 > 8.30 a.m. to 12.00 p.m.

Determining rheology


by reverse analysis

- Defining the case

Interpreting the results

Setup

Determining a heat exchange factor	Defining the caseSetupInterpreting the results
Coupling optimization with CAD	Coupling concept Example of use with PTC Creo Parametric Example of use with SolidWorks
Innovation	Optimization with discrete valuesOptimization with Design Of Experiment
Conclusion	• Questions and course assessment

Genetic algorithm