

Automatic optimization

You need to optimize your process? Discover the solutions for identifying an ideal billet for complete and flawless filling or a tooling design that minimizes stress. No more long and boring trial plans. Choose automatic optimization!

FORGE® automatic optimization is an extremely effective tool.

Thanks to its genetic algorithm, you can automatically vary an entire range of process parameters (billet dimensions, tool shapes, billet positioning, etc.). This way you will be able to identify the best conditions for optimally forming your part. In addition, you will study parameter identification techniques using reverse analysis as well as couplings with CAD environments for designing blockers and tooling.

LEVEL

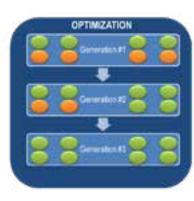
Advanced - Users seeking to master automatic optimization principles so as to achieve reliable and efficient use.

PREREQUISITES

A good grounding in the use of FORGE® is a requirement. A perfect knowledge of the process is essential to determine what you want to optimize and how. You need to know the chaining and transitions concepts.

GOALS

- Understanding optimization concepts and terms: genetic algorithm (individuals and generations), minimizable, stress and configured action
- Optimizing industrial processes
- Reducing billet volume and finished part faults
- Identifying parameters by reverse analysis
- Coupling optimization with CAD (PTC Creo Parametric, SolidWorks and Catia)


DURATION	DATES 2022		
1.5 Days	03-04 March	29-30 June	04-05 November
TRAINING		PRICE EXCL. TAX	PARTICIPANTS
Inter-company		1050€ per person	3 to 8 people
In-company			

 \geq

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.			
Introduction	Transvalor presentation Course goals		
Reminders on chaining	 Chaining concept Transitions 2D & 3D chaining 	[] [] ? []	
General concepts	 Automatic optimization concept Individuals and generation notions Definition of a minimizable Definition of a constraint Definition of configured actions 	Optimization of a forging sequence	
Optimizing the 2D billet volume	Setup Analyzing optimization results		
Optimizing a 3D rolled blocker	Setup Launching computation Analyzing optimization results	HERE P	
Determining a friction factor	 Defining the case Setup Interpreting the results 	Original design (in red) vs Optimized design (in blue)	
Determining rheology by reverse analysis	 Defining the case Setup Interpreting the results 		

DAY 2 > 8.30 a.m. to 12.00 p.m.

Determining a heat exchange factor	 Defining the case Setup Interpreting the results
Coupling optimization with CAD	 Coupling concept Example of use with PTC Creo Parametric Example of use with SolidWorks
Innovation	 Optimization with discrete values Optimization with Design Of Experiment
Conclusions	Questions and course assessment

Genetic algorithm

H.