ALL SOFTWARE

Finite element modeling fundamentals

Perfect your use of the finite element method and understand how it is applied to solving large deformation issues. This way you can improve the quality of your results with a better understanding of numerical aspects. This is one of the challenges of this training course!

During this course, you will cover the essentials of finite element modeling and apply it to the mechanics of continuous environments. This day lets participants broaden their numerical knowledge ready for putting Transvalor software solutions to more intense use, especially FORGE® & COLDFORM®. You will study the fundamentals linked to

mechanical and thermal solvers, meshing and remeshing as well as the differences between formulations (Lagrangian, Eulerian or ALE).

Through examples and during the simulation analysis workshops, participants will be able to understand the impact that numerical parameters have on the results obtained.

LEVEL

Beginner - Users wishing to expand their numerical knowledge in the field of finite element simulation and modeling.

PREREQUISITES

There are no prior requirements for this course.

GOALS

- Knowing the basics of finite element in order to make better use of our products and take advantage from the simulation
- Understanding the fundamentals of the finite element method: from the thermal equation to the mechanics
- Gaining a more in-depth knowledge of space and time discretization
- Mastering meshing and remeshing principles
- Learning how to determine material behavior
- Checking the impact of numerical parameters on the end result

OTHER RECOMMENDED COURSES

- Starting with FORGE®
- FORGE[®] Die analysis

DURATION		DATES 2022	
1 Day	18 January	23 May	21 September
TRAINING		PRICE EXCL. TAX	PARTICIPANTS
Inter-company		540€ per person	3 to 8 people
In-company		1300€ per training	1 to 3 people

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	General presentation Course goals	
Numerical simulation	Why numerical simulation is useful for forming materials Real-life examples	
Introduction to the finite ele- ment method	 Finite element method principle Space and time discretization Interpolation function Boundary conditions 	
Domain discretization and formulation	 Mesh and element types Mesh surface and density quality criteria Lagrangian or Eulerian formulation Remeshing ALE method 	
Handling symmetries	 2D axisymmetric or 2D deformation plane 3D with symmetry Impact of symmetries on computation time Result analysis 	
Handling the contact	 Definition and types Contact distance calculation Penalized contact Deformable multibody contact 	
Mechanical and thermal problem resolution	 NO-linear behavior resolution Mechanical and thermal formulation Direct or iterative solver method Time increment management Geometry updating Transfer of fields Mechanical-Thermal-Metallurgical coupling Diffusion equation resolution 	
Material behavior	 Behaviors: visco-plastic, elasto-plastic, plastic and elastic Thermo-dependence and sensitivity to the deformation rate Plasticity criteria and flow stress concept Isotropy and anisotropy 	
Exercices	 Necessary data Modeling stages Applying post-processing to mechanics 	
Conclusions	Questions and course assessment	

A mini-element, 3 node triangle also called P1+/P1

Pressure degrees of freedom Velocity degrees of freedom

Transvalor products tetrahedral mesh