

Die analysis

To develop your cold forming processes, you need to be able to address issues relating to dies: How to extend the lifetime of your dies? How to estimate the level of stress and assess wear? How to size a pre-stressed interference fit assembly? If you want to learn more about cold forming Die analysis, then this course is for you!

To reduce the cost of parts and speed up production cycles, there is growing interest in Die analysis in the cold forming field. After this course, participants will know how to setup, analyze and interpret their computations on the dies. A number of computation modes will be covered (rigid, uncoupled, coupled) and the advantages of each method will be detailed. On the second day, the accent will be on implementing computation with pre-stressed dies and on

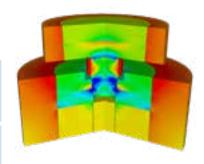
the 'Virtual Interference Fit' technique that is specific to 3D simulations. The proposed exercises allow precisely understanding the computation results (equivalent stress, main stress, abrasive wear, contact time, etc.). This way you will have a full panel of recommendations to quickly and reliably interpret issues relating to dies.

LEVEL

Intermediate - Users wishing to enhance their knowledge of Die analysis applied to cold forming.

PREREQUISITES

A good grounding in the use of COLDFORM® is a requirement. You need to have taken the 'Starting with COLDFORM®' or equivalent course.

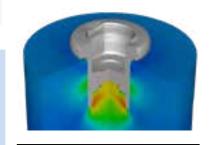

GOALS

- Importing assembly files in CAD format (stl, step, etc.)
- Working with prestressed dies and assessing interference fit
- Simulating die mechanical and heat behavior (failure, fatigue)
- Analyzing and interpreting results (wear, stress, etc.)

DURATION	DATES 2022		
1.5 Days	05-06 May	04-05 August	15-16 December
TRAINING		PRICE EXCL. TAX	PARTICIPANTS
Inter-company		1050€ per person	3 to 8 people
In-company		1950€ per training	1 to 3 people

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	Transvalor presentation Course goals
Rigid tool computations	 Why this kind of computation? Recommendations for the surface meshes in 2D/3D dies Results available from the simulation for forming rigid 2D/3D dies (abrasive wear, normal stress, etc.)
Uncoupled computations	 Recommendations for volumic meshes in 2D/3D dies Setup Analyses of additional results on 2D/3D tooling (Von Mises stress and principal stress)
Coupled computations	 Why this kind of computation? Defining Master-Master and Master-Slave contacts 2D/3D setup Analyzing results (stress, temperature) The various options in coupled computations
Comparisons between uncoupled and coupled computations	 Material flow Normal stress Abrasive wear Von Mises stress Die deformation Forming load Choosing the type of computation



Hoop stress in an assembly of prestressed dies

DAY 2 > 8.30 a.m. to 12.00 p.m.

Prestressed dies	 Defining the prestress concept Deformable die interpenetration in 2D mode Virtual prestress in 3D mode (VIF) Setup Viewing and interpreting results
Conclusions	- Questions and course assessment

Cold forming a fastener made of stainless steel - Equivalent stress distribution