
O
Osterman Research

WHITE PAPER

White Paper by Osterman Research
Published August 2021
Sponsored by GrammaTech, Inc.

Uncovering the Presence of
Vulnerable Open-Source Components
in Commercial Software

©2021 Osterman Research 2

Uncovering the Presence of Vulnerable Open-Source Components in Commercial Software

Executive Summary
Commercial off-the-shelf software often includes open-source software
components, but vendors frequently do not disclose details of the presence of such
components. Many open-source components contain a range of known
vulnerabilities that can be used as egress points for cyberattack. This lack of
awareness of open-source components used by organizations in commercial off-
the-shelf software increases the security risk, attack surface, and potential for
compromise by cybercriminals.

In this white paper, we present the findings of an investigation into the use of open-
source components in commercial off-the-shelf software—many of which have a
list of known vulnerabilities—across five common software categories. The base
data was generated by GrammaTech using its CodeSentry software supply chain
security product. CodeSentry uses multiple methods of identifying open-source
components used in commercial off-the-shelf software that is delivered in binary
form. CodeSentry does not need access to the vendor’s source code to complete its
analysis of included open-source components.

KEY TAKEAWAYS
Key takeaways of this research are:

• The Meetings and Email Client Categories Are the Most Vulnerable

Applications in the online meetings and email client categories contained the
highest average weighting of vulnerabilities. Given the widespread usage of
these tools, organizations should better understand their security attack
surface and the potential for compromise.

• Open-Source Components Widely Used
The applications analyzed in this white paper all contained open-source
components. On average, 30% of all open-source components contained at
least one vulnerability or security flaw that has been assigned a CVE (Common
Vulnerabilities and Exposures) identifier.

• Components with Critical Vulnerabilities Commonly Used
All but three of the applications in this study included at least one critical
vulnerability with a 10.0 CVSS (Common Vulnerability Scoring System) score—
the highest possible. The near-ubiquitous usage of such vulnerable components
renders comparisons between applications on this basis meaningless as all
applications analyzed are seen as vulnerable.

• Newer Versions of Components Aren’t Always More Secure
Several components presented with multiple versions across the analyzed
applications, but newer versions of components were not always more secure,
either as measured by the number of vulnerable components used or the
weighted score of vulnerabilities in each component.

• Multiple Approaches for Organizations to Use CodeSentry
Organizations assessing the security standing of new commercial off-the-shelf
software should use CodeSentry to address enterprise risk before choosing and
implementing applications. CodeSentry can help organizations rapidly identify
open-source components, ascertain the presence of security vulnerabilities,
and fast-track penetration testing if necessary. These activities can result in
organizations working with vendors to mitigate found issues or rejecting
software based on security and risk policies.

Commercial off-
the-shelf
software often
includes open-
source software
components, but
vendors
frequently do
not disclose
details of the
presence of such
components.

©2021 Osterman Research 3

Uncovering the Presence of Vulnerable Open-Source Components in Commercial Software

ABOUT THIS WHITE PAPER
This research study was conducted on behalf of GrammaTech. Findings are based
on the output of the vulnerability reports produced by GrammaTech CodeSentry.
Information about GrammaTech can be found at the end of this white paper.

Methodology
GrammaTech used its CodeSentry product to look for the presence of open-source
components in the binary packaging of widely used software applications. The
output reports for each application were supplied in PDF format to Osterman
Research. The applications were grouped in five categories which were used in the
analysis presented in this white paper:

• Web browsers

• Email clients

• File sharing clients, e.g., for cloud-based storage and file sync

• Online meetings clients

• Messaging clients

Osterman Research collated and correlated the findings and analysis presented for
use in this study. This included:

• Transcribing the executive risk scores and security ratings from each output

report from CodeSentry into a spreadsheet

• Analyzing the executive risk scores and security ratings to create one of the
overall security scores presented in this white paper

• Tabulating the use of all identified open-source components across the
analyzed products, including drilling into details on the types of vulnerabilities
included in each component

• Calculating averages by category, best and worst scoring applications by
category, and other measures to give comparative security scores and enable
the creation of the charts shown in this white paper

EXCLUDED APPLICATIONS
Some of the software applications analyzed by CodeSentry were excluded from this
study. There were two reasons for doing so:

• One software application in the web browsers category contained no open-

source components. The web browser in question was developed by a well-
known vendor using proprietary code only, and while the browser does include
a long list of publicly disclosed code vulnerabilities, the absence of open-source
components in the code base rendered it beyond the scope of this study.

• Other software applications did not fit into any of the five categories above.
Each of these software applications belonged to its own category, and since the
intent of this white paper was to present category-level findings, they were
excluded.

GrammaTech
used CodeSentry
to analyze
widely used
software
applications.
Osterman
Research studied
the output of
these reports in
five application
categories.

©2021 Osterman Research 4

Uncovering the Presence of Vulnerable Open-Source Components in Commercial Software

Assessing Security by Category
We examined reports from CodeSentry for each of the analyzed software
applications in five categories. We calculated four security scores across the five
categories. In this section, we look at each of these in turn.

SCORE 1. BASE SECURITY SCORE
The base security score for each category is the number of open-source
components in the software application that include at least one N-Day
vulnerability as a percentage of total components. Three values can be calculated,
and are shown in Figure 1:

• Worst Security Score

The security score for the worst-performing product in the category. For
example, one application in the web browsers category was found to include
41% of open-source components with at least one N-Day vulnerability.

• Average Security Score
The average number of vulnerable components as a percentage of total
components for all applications in the category. Browsers, for example, have on
average 29% open-source components that include at least one N-Day
vulnerability.

• Best Security Score
The security score for the best performing application in the category, or the
application with the lowest number of vulnerable components. In the web
browsers category, the best performing application uses 24% of components
with at least one N-Day vulnerability. The category with the lowest best score is
messaging.

Figure 1
Base Security Score of Five Product Categories
Percentage of vulnerable open-source components

Source: Osterman Research (2021)

The base
security score is
the percentage
of vulnerable
components in
the software
application.

©2021 Osterman Research 5

Uncovering the Presence of Vulnerable Open-Source Components in Commercial Software

SCORE 2. WEIGHTED SECURITY SCORE
The number of components that include N-Day vulnerabilities provides only a rough
sense of the security of a category (and each application within the category). There
is no sense of magnitude portrayed by the base security score because it focuses
simply on the count of vulnerable components instead of the composition of
vulnerabilities in each component. The weighted security score, by contrast,
enumerates the count of vulnerabilities in each component by a weighting to derive
a single overall assessment of the severity of the vulnerabilities included in the
application. The enumeration is based on:

• The count of vulnerabilities with a Low CVE is multiplied by 1.

• The count of vulnerabilities with a Medium CVE is multiplied by 2.

• The count of vulnerabilities with a High CVE is multiplied by 10.

• The count of vulnerabilities with a Critical CVE is multiplied by 20.

The total weighted security score is the sum of these values. Highlighting the critical
vulnerabilities is important as the likelihood of attack is much higher with less
complexity than can impact confidentiality, availability, and integrity. See Figure 2.

Figure 2
Weighted Security Score of Vulnerabilities in Identified Components
Weighted value of vulnerabilities (low, medium, high, and critical)

Source: Osterman Research (2021)

Figure 2 shows that although the total average weighted security score for the
meetings category is 2,082 (the sum of the values of the four levels of severity—780
for critical plus 1046 for high plus 250 for medium plus 6 for low), the worst-
performing application in the meetings category has a total weighted security score
of 3,458. This single application contains a weighted vulnerability that is almost 10
times higher than the best performing application in the same category. The highest
variation between the worst and best application in a single category is in the web
browsers category, where the worst is 49 times higher than the best.

©2021 Osterman Research 6

Uncovering the Presence of Vulnerable Open-Source Components in Commercial Software

SCORE 3. NORMALIZED WEIGHTED SECURITY SCORE
The weighted security score above provides a gross weighted measure of
vulnerabilities across all vulnerable open-source components in an application. This
raises the assessment problem that applications with differential component
compositions can have an equivalent security score. For example, an application
with a high number of vulnerabilities in a single component could have the same
score as an application with a high number of components, each with a single
vulnerability. Similar scores are unhelpful in this context because the driver of
insecurity—and by implication the mitigation strategy required—are at polar
extremes.

To enable a better basis of comparison between categories, the weighted security
score can be normalized to account for the complexity of the application, which is
proxied as the total number of identified components in the application. By
including the weightings for the high and critical CVEs in each component only, we
get the results shown in Figure 3.

Figure 3
Normalized Weighted Security Score
Weighted value of vulnerabilities (medium/high) per component in the application

Source: Osterman Research (2021)

We make the following observations:

• The messaging category has the highest average across the five, and the

meetings category the single application with the highest weighted value of
vulnerabilities. The messaging category increases in threat level once the data
is normalized, in comparison to the previous gross weighted measure.

• The rank order placement of applications within some categories has shifted
too. In the email client category, for example, the worst-performing application
under the weighted security scoring approach (total value 2465) is the second
worst under the normalized approach (normalized score of 48.6). The second
worst under the weighted approach is also the worst under the normalized
one. This was due to the application with the highest weighted security score
using almost twice as many components as the other application.

The weighted
security score
can be
normalized to
account for the
complexity of
the application,
which is proxied
as the total
number of
identified
components in
the application.

©2021 Osterman Research 7

Uncovering the Presence of Vulnerable Open-Source Components in Commercial Software

SCORE 4. HIGHEST-RATED VULNERABILITY IN A COMPONENT
The fourth security measure we explored—but ultimately discarded—involved
looking at the security score of the highest-rated vulnerability (i.e., CVE) across all
open-source components in each application. This provides an assessment of the
worst-case vulnerability to address when introducing a new application into an
organization. Using the CVSS (Common Vulnerability Scoring System) number, we
get the results as shown in Figure 4.

Figure 4
Vulnerability Severity per Category
Component with the highest CVSS score in a product

Source: Osterman Research (2021)

In looking at these results, we make the following observations:

• Almost All Applications Use Highly Vulnerable Components

Each of the five categories in this study includes applications that use open-
source components with critical vulnerabilities. All applications in the Email
Client and Messaging categories use components with at least one critical
vulnerability with a CVSS score of 10.0.

• Minimal Variation
There is minimal to no variation across applications and categories. Of all the
individual applications in the five categories, only three products were found
not to use an open-source component containing a critical vulnerability with a
CVSS rating of 10.0.

• Highest-Rated Vulnerability is a Useless Measure for Comparison
The lack of variation across applications and the near-ubiquitous usage of
open-source components that contain a critical vulnerability make this
measure largely meaningless. Since every application is basically the same in its
presentation in this security score, its use as a comparative measure is
unnecessary. This does not change the fact, however, that all applications
analyzed present serious risk to an organization due to the widespread
presence of critical vulnerabilities.

Highest-rated
vulnerability in a
component used
by an application
is a meaningless
comparative
score due to
near-ubiquitous
use of open-
source
components with
critical
vulnerabilities.

©2021 Osterman Research 8

Uncovering the Presence of Vulnerable Open-Source Components in Commercial Software

Common Vulnerable Components
In this section, we look at the distribution of vulnerable open-source components
across the applications included in this study, as well as how the pattern of
vulnerabilities changes over time when newer versions of a component are
released.

COMPONENTS WITH EXTREME VULNERABILITIES
Of the components identified across the applications analyzed by CodeSentry and
used in this study, two versions of the firefox open-source component (not the
browser itself) contributed 75.8% of the CVEs. In second place, 16 versions of
openssl had a combined 9.6% of the CVEs, and two versions of libav were 8.3% of
the CVEs. These numbers are derived by counting the number of vulnerabilities
(e.g., CVEs) in each component when a component is used in an application.
Multiple instances of the same component in a single application are only counted
once. See Figure 5.

Figure 5
Frequency Weighting of Vulnerable Components Identified in Applications
Count of CVEs in vulnerable components used by the applications in this study

Source: Osterman Research (2021)

©2021 Osterman Research 9

Uncovering the Presence of Vulnerable Open-Source Components in Commercial Software

Based on Figure 5, the immediate conclusion is that urgently addressing the use of
versions of the firefox, openssl, and libav open-source components with
vulnerabilities would make a significant contribution to decreasing the security risks
of using open-source software across the five product categories examined for this
report.

However, there is a second and equally valid conclusion: any open-source
component that includes a high or critical vulnerability should not be ignored and
must be dealt with urgently to reduce risk. The firefox open-source component
features a disproportionate but concentrated share of the vulnerabilities with high
and critical ratings as represented in this study (as do openssl and libav, but to a
lesser extent), while the other components feature a broad and distributed set of
risks. Assuming the risks of the top three open-source components are fully
addressed—as per the first conclusion above—the risk profile as shown in Figure 6
remains to be addressed. Organizations should urgently address the use of all open-
source components that include high and critical vulnerabilities.

Figure 6
Frequency Weighting of Vulnerable Components Identified in Applications—
Excluding the Top Three Open-Source Components
Count of CVEs in vulnerable components used by the applications in this study

Source: Osterman Research (2021)

Urgently address
the use of
versions of the
firefox, openssl,
and libav
open-source
components
with
vulnerabilities
… but don’t stop
there.

©2021 Osterman Research 10

Uncovering the Presence of Vulnerable Open-Source Components in Commercial Software

NEWER VERSIONS DO NOT ALWAYS MEAN FEWER VULNERABILITIES
The openssl open-source component presented with vulnerabilities in 16 different
versions. Version 1.0.2d was the earliest version (51 vulnerabilities), and 1.1.1i was
the latest (4 vulnerabilities). While the drop from 51 to 4 vulnerabilities is
commendable, new major versions (e.g., 1.1.0 and 1.1.1) have presented with a
higher number of vulnerabilities than the stepwise previous version. There has not
been a straight-line decrease in newer versions in the number of vulnerabilities nor
the weighted value of high and critical vulnerabilities. See Figure 7.

Figure 7
Vulnerabilities in OpenSSL by Version
Count of vulnerabilities and weighting of high/critical vulnerabilities by version

Source: Osterman Research (2021)

Other open-source components also presented with vulnerabilities across multiple
versions, and generally there was a decline in the number of vulnerabilities. For
example:

• Firefox (2 versions). From 254 vulnerabilities in 66.0.3 to 130 vulnerabilities in

75.0.

• libav (2 versions). From 45 vulnerabilities in 0.8.1 to 16 in 0.8.17.

• libxslt (4 versions). From 14 vulnerabilities in 1.1.26 to 2 vulnerabilities in
1.1.32 and 4 vulnerabilities in 1.1.34.

Open-source software is unlikely to disappear from third-party software, and a
straight-line decrease in the number of vulnerabilities is not evidenced from the
data collected for this study. We make the following recommendations:

• Continual optics required

Organizations need the ability to continually assess evolving open-source
component usage and the fluctuation of vulnerabilities across newer and
emerging versions.

Newer versions
of open-source
components do
not necessarily
contain fewer
vulnerabilities.

©2021 Osterman Research 11

Uncovering the Presence of Vulnerable Open-Source Components in Commercial Software

• Address the fear of breaking the existing code base
Although open-source components are frequently being updated, developers
are not always using the most current version, either by release date or the
latest version with the fewest vulnerabilities (or the lowest weighted security
score for high and critical vulnerabilities). Driving developers to release code on
an ever-faster cycle results in the fear of breaking existing code and hence the
preference to keep using known but vulnerable components which only
extends the presence of vulnerabilities across time.

Approaches for Using CodeSentry
We see several approaches for organizations to use CodeSentry.

• Pre-Purchase/Deployment Security Vulnerability Assessment

The code composition of commercial off-the-shelf software has traditionally
been an unknown quantity to organizations, with the mix and composition of
proprietary code and open-source components often not disclosed by the
vendor. Organizations can use CodeSentry in the pre-purchase or pre-
deployment phase of software evaluation to carry out internal due diligence to
ascertain the presence of open-source components in compiled software or the
software supply chain. CodeSentry’s ability to produce a Software Bill of
Materials (SBOM) supporting the CycloneDX export standard to match
identified components with vulnerability listings drawn from multiple data sets,
including the National Vulnerability Database (NVD), streamlines the
classification of applications by vulnerability level.

• Legacy Software Code Analysis
Applications which have been in use for years may contain previously
undisclosed open-source components in which may be hidden critical
vulnerabilities. With CodeSentry, you can quickly analyze these applications to
determine what security risks must be addressed and prioritize a mitigation
strategy.

• Fast-Track Penetration Testing Activities
Security professionals carrying out penetration testing activities on commercial
off-the-shelf software can fast-track their activities by using CodeSentry to give
an initial assessment of embedded vulnerabilities and a roadmap for where to
focus efforts. Organizations can therefore optimize where pen testers spend
their time.

• Policy-Based Rejection of Vulnerable Applications
By integrating CodeSentry’s findings with an organization’s security policy
engine, vulnerable software applications can be rejected by policy. For
example, if an employee attempts to download an email client that contains
too many high and critical vulnerabilities, the download session can be halted
automatically. As an extension, an organization could then suggest less
vulnerable alternatives from the same product line or an alternative product
from the same category.

Security teams face the challenge of protecting the organization from the most
egregious security threats while equipping employees with the best applications to
support secure productivity and collaboration. CodeSentry contributes to this
vision, enabling security teams to move from being the team that always says “no”
towards a team that is better equipped to give an informed “yes” on a faster
cadence.

CodeSentry gives
organizations the
ability to rapidly
execute security
assessments on
new applications
and fast-track
pen testing
activities, thus
strengthening
security posture.

©2021 Osterman Research 12

Uncovering the Presence of Vulnerable Open-Source Components in Commercial Software

Summary and Next Actions
Buying commercial off-the-shelf software applications is not a risk-free proposition.
For multiple reasons, vendors surreptitiously use open-source components in their
applications, including components that contain significant levels of vulnerability.
CodeSentry provides a simple method for organizations to assess source code for
the presence of open-source components and identify the number and severity of
vulnerabilities in each component. The use of CodeSentry puts security assessments
of commercial software on the fast track, enabling organizations to be intentional
about managing their security risks and sizing their attack surface as they bring on
new applications for the benefit of the business.

Sponsored by GrammaTech
GrammaTech is a leading global provider of application security testing (AST)
solutions used by the world’s most security-conscious organizations to detect,
measure, analyze and resolve vulnerabilities for software they develop or use.

GrammaTech’s solutions include:

• CodeSentry

Quickly perform binary analysis on software applications to identify third-party
and open-source components, generate a comprehensive SBOM, detect 0-Day
and N-Day vulnerabilities, and get an overall risk score.

• CodeSonar
Seamlessly integrate static application security testing into the DevSecOps
process to analyze source and binary code, address security issues early,
improve code quality throughout the software development life cycle, and
accelerate projects.

GrammaTech is also a trusted cybersecurity and artificial intelligence research
partner for the nation’s civil, defense, and intelligence agencies. GrammaTech has
corporate headquarters in Bethesda, MD, a Research and Development Center in
Ithaca, NY, and publishes Shift Left Academy, an educational resource for software
developers.

Visit us at www.grammatech.com and follow us on LinkedIn and Twitter.

www.grammatech.com

@grammatech

+1 301 530 2900

sales@grammatech.com

https://www.linkedin.com/company/grammatech/
https://twitter.com/grammatech

©2021 Osterman Research 13

Uncovering the Presence of Vulnerable Open-Source Components in Commercial Software

© 2021 Osterman Research. All rights reserved.

No part of this document may be reproduced in any form by any means, nor may it be distributed
without the permission of Osterman Research, nor may it be resold or distributed by any entity other
than Osterman Research, without prior written authorization of Osterman Research.

Osterman Research does not provide legal advice. Nothing in this document constitutes legal advice, nor
shall this document or any software product or other offering referenced herein serve as a substitute for
the reader’s compliance with any laws (including but not limited to any act, statute, regulation, rule,
directive, administrative order, executive order, etc. (collectively, “Laws”)) referenced in this document.
If necessary, the reader should consult with competent legal counsel regarding any Laws referenced
herein. Osterman Research makes no representation or warranty regarding the completeness or
accuracy of the information contained in this document.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND. ALL EXPRESS OR IMPLIED
REPRESENTATIONS, CONDITIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED, EXCEPT TO THE EXTENT
THAT SUCH DISCLAIMERS ARE DETERMINED TO BE ILLEGAL.

