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Abstract 

Background: Machine learning (ML) can be an effective tool to extract information from attribute-rich molecular 
datasets for the generation of molecular diagnostic tests. However, the way in which the resulting scores or classifi-
cations are produced from the input data may not be transparent. Algorithmic explainability or interpretability has 
become a focus of ML research. Shapley values, first introduced in game theory, can provide explanations of the result 
generated from a specific set of input data by a complex ML algorithm.

Methods: For a multivariate molecular diagnostic test in clinical use (the VeriStrat® test), we calculate and discuss the 
interpretation of exact Shapley values. We also employ some standard approximation techniques for Shapley value 
computation (local interpretable model-agnostic explanation (LIME) and Shapley Additive Explanations (SHAP) based 
methods) and compare the results with exact Shapley values.

Results: Exact Shapley values calculated for data collected from a cohort of 256 patients showed that the relative 
importance of attributes for test classification varied by sample. While all eight features used in the VeriStrat® test con-
tributed equally to classification for some samples, other samples showed more complex patterns of attribute impor-
tance for classification generation. Exact Shapley values and Shapley-based interaction metrics were able to provide 
interpretable classification explanations at the sample or patient level, while patient subgroups could be defined by 
comparing Shapley value profiles between patients. LIME and SHAP approximation approaches, even those seeking 
to include correlations between attributes, produced results that were quantitatively and, in some cases qualitatively, 
different from the exact Shapley values.

Conclusions: Shapley values can be used to determine the relative importance of input attributes to the result gen-
erated by a multivariate molecular diagnostic test for an individual sample or patient. Patient subgroups defined by 
Shapley value profiles may motivate translational research. However, correlations inherent in molecular data and the 
typically small ML training sets available for molecular diagnostic test development may cause some approximation 
methods to produce approximate Shapley values that differ both qualitatively and quantitatively from exact Shapley 
values. Hence, caution is advised when using approximate methods to evaluate Shapley explanations of the results of 
molecular diagnostic tests.
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Background
Multiplexed measurement methods from the fields of 
proteomics, genomics, transcriptomics, and metabo-
lomics can generate vast amounts of patient data, which 
can be used to predict patient outcome with the appli-
cation of machine learning (ML) techniques. Molecular 
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diagnostic tests produced from large numbers of attrib-
utes via ML can be effective predictors of outcome, mak-
ing use of the information in these highly multivariate 
data inputs to improve performance and robustness. 
However, neither the way in which the tests produce a 
result for a given patient, nor the biological rationale 
underlying the tests may be transparent. While trans-
lational studies can be used to elucidate the biological 
mechanisms behind such tests, providing a meaningful 
and accurate picture of how a test classification is arrived 
at, given the input data for a specific patient, requires a 
different approach.

Explainability of ML models and artificial intelligence 
(AI) has recently become a major focus of attention in 
other areas in which these methods are employed [1]. 
Concerns about biases in ML implementations, including 
those containing the attributes gender or race [2, 3], and 
the recognition of the right of individuals to understand 
how their personal data is being used, have highlighted 
the need for interpretable explanations and quantifi-
cation of how attributes are used by complex ML algo-
rithms [4].

Explainability research has moved away from try-
ing to provide a global description of relative attribute 
importance accurate for all possible sets of input data, 
which is unlikely to be successful given the complex-
ity and nonlinearities inherent in most ML approaches, 
to a local approach of assessing relative attribute impor-
tance for the prediction generated for a specific input 
data instance. In the case of molecular tests, this latter 
approach corresponds to providing a description of the 
relative importance of used attributes generating a result 
for an individual patient.

One proposal has been to construct a simpler, more 
interpretable model of a complex ML algorithm which 
reproduces the results of the full ML algorithm in the 
vicinity of the individual patient data for which we seek 
to explain the test result. The local interpretable model-
agnostic explanation (LIME) approach seeks to generate 
a model of a ML algorithm which can be easily inter-
preted and which can reproduce the results of the ML 
algorithm in the locality of the input data without requir-
ing information about the ML algorithm itself [5]. Only 
oracle access to the ML algorithm is required—i.e., only 
results of the ML algorithm for various inputs are neces-
sary, not any details of how they are arrived at from the 
input attributes.

An alternative approach to explainability makes use 
of game theory concepts developed for determining 
the equitable distribution of winnings between players 
working in teams [6, 7]. Several years ago, parallels were 
observed between deciding on a fair distribution of win-
nings between team members in multiplayer games and 

assessing the relative importance to the result of a ML 
algorithm of multiple input attributes [8–10]. It was pro-
posed that Shapley values (SVs), which provide an equita-
ble scheme for dividing game winnings within a team of 
multiple players, could provide the framework for assign-
ing relative importance of multiple attributes to the result 
of a ML algorithm. SVs assess the contribution of a player 
to the team’s result, or an attribute to the algorithm out-
put, by examining the results for all possible coalitions of 
players within the team, or subsets of possible attributes. 
SVs satisfy several axioms (discussed in Methods) which 
guarantee that these explanations possess some desirable 
properties [6, 11, 12]. Unfortunately, exact calculation of 
SVs is generally unfeasible in terms of computation time 
and requires detailed knowledge of the ML algorithm, 
which may not be available. Recent research has focused 
on methods for approximating SVs which circumvent 
these issues. These strategies include Shapley Additive 
Explanations (SHAP) [13, 14], Kernel SHAP [13], and 
methods where calculation of the exponentially large 
number of coalitions that must be evaluated for calcula-
tion of an exact SV is replaced by sampling only a subset 
of these coalitions [9, 10, 13, 15].

While these explainability approaches have proved use-
ful in certain AI applications, notably in natural language 
processing, image-related, and other traditional Big Data 
tasks [1], applying them to molecular diagnostic ML algo-
rithms presents some potential difficulties. Training sets 
for molecular diagnostics ML-algorithms are usually very 
restricted in number of observations (patients or sam-
ples). In addition, the training sets are sometimes chosen 
to be enriched in certain patient subsets (e.g., respond-
ers vs progressors on a particular therapy), rather than 
being representative of the population on which the test 
will be applied. Hence, methods employing distributional 
approaches can be problematic. Furthermore, molecular 
and clinical data are often highly correlated. While these 
correlations can be used to advantage, for example in set 
enrichment methods, they present additional challenges 
to some SV approximation methods that do not maintain 
inter-feature correlations [12]. Finally, most ML algo-
rithms produce results that are either binary, have a lim-
ited number of categories, or are bounded scores. Hence, 
the winnings of the equivalent game are bounded or take 
a limited number of discrete values, rather than being 
continuous and unbounded. As a result, the value range 
on which Shapley values are measured is limited leading 
to interpretational difficulties [12].

Our goal in this manuscript is to demonstrate how 
exact SVs can be used to explain the results of one exam-
ple of a clinically used molecular diagnostic test and how 
they can be interpreted. We also apply the LIME and 
SHAP-based approaches, which are available in standard 
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ML software packages (IBM’s AI Explainability 360, Ana-
conda Python package (https:// anaco nda. org/ power ai/ 
aix360), Matlab’s Deep Learning Toolkit) and increas-
ingly used in applications, to the same test to explore 
the differences between the results of these approximate 
methods and exact SVs. Further, we apply three methods 
for assessing influence of pairs of attributes, rather than 
individual attributes, within the SV framework: Harsanyi 
Dividends (HDs) [7], Shapley Interaction Indices (SIIs) 
[14], and Shapley-Taylor Interaction Indices (STIIs) [16]. 
We discuss their interpretation and propose that alterna-
tive quantities may be required to provide information on 
the contribution to test results of one attribute in addi-
tion to another specific attribute that are useful in the 
context of binary molecular diagnostic tests.

Methods
The VeriStrat test
Our studies use the VeriStrat® (VS) test as an example of 
a molecular diagnostic test [17]. The test has been per-
formed on more than 40,000 patient samples in a routine 
clinical setting and has been prospectively validated for 
its prognostic value and ability to predict differential out-
come between chemotherapy and targeted therapy for 
patients with non-small cell lung cancer (NSCLC) [18]. 
The test has also been shown to have prognostic power 
for prediction of outcomes for patients with several 
other cancer types [19, 20] and for patients with NSCLC 
treated with other therapies [21].

The VS test is a mass spectrometry-based proteomic 
test run on a blood-based sample. Full details of test 
development and validation have been provided else-
where [17, 22]. Three technical replicate spectra are 
generated from each sample. Each replicate spectrum 
is processed to render the data reproducible and com-
parable between samples, and feature values from eight 
mass/charge spectral regions, centered at 5843, 11,445, 
11,529, 11,759, 11,903, 12,452, and 12,579, respectively, 
evaluated. These feature values are combined using a 
7-nearest neighbor (7NN) classifier based on a reference 
set of feature values from 26 samples, 13 defined as Poor 
(derived from patients with NSCLC experiencing rapid 
progression on gefitinib therapy) and 13 defined as Good 
(derived from patients with NSCLC experiencing long 
term stable disease on gefitinib therapy), to produce a 
Poor or Good classification for each technical replicate. 
When all three replicates produce concordant classifi-
cations, a result of VS Good (likely to experience better 
outcomes) or VS Poor (likely to experience worse out-
comes) is reported. Non-concordant replicate classifica-
tions result in a VS Indeterminate result. Here, we focus 
on the result obtained from applying the VS algorithm 
to one instance of data from a single technical replicate 

mass spectrum (an “instance” that will be classified as 
either Good or Poor). The VS ML algorithm is simple 
enough to permit calculation of exact SVs and exact 
interaction indices for a large cohort of patients and to 
allow comparisons with SHAP values and the results of 
the LIME approach.

The VS features are known to be strongly correlated 
(off-diagonal correlation matrix elements vary from 0.310 
to 0.996 for the 256-instance cohort considered in this 
study), with multiple features corresponding to isoforms 
of C-terminal truncation of serum amyloid A (SAA) [23, 
24]. The 11,529 feature is also understood to contain 
doubly-charged C-reactive protein. Increased levels of 
inflammatory proteins have been observed in patients 
with VS Poor classification [25].

Patients and samples
The cohort for SV evaluation constituted 256 patients 
from the phase 3 prospective clinical trial validating the 
ability of the VS test to predict differential outcomes 
between single agent chemotherapy and targeted therapy 
in second-line NSCLC [18]. All patients provided written 
informed consent and the study was approved by insti-
tutional review boards and independent ethics commit-
tees at the 14 participating sites. The sample aliquots had 
been processed and classified during the trial concord-
ance analysis. Trial inclusion and exclusion criteria and 
patient baseline characteristics have been previously 
published [18]. While all patients included in the cohort 
received a classification of VS Good (N = 179) or VS 
Poor (N = 77) from initial trial aliquot, the aliquots used 
for this study yielded 186 VS Good classifications, 64 VS 
Poor classifications and 6 VS Indeterminate results.

In this study we were primarily interested in the clas-
sifications produced for the first technical replicate 
(instance) generated from each aliquot. Of the 256 clini-
cal trial patients with concordance study aliquots, 67 
instances were classified as Poor and the remaining 189 
as Good.

Exact Shapley values
SVs assess the contribution of a player to the team’s 
result, or the contributions of an attribute to the algo-
rithm output, by examining the results/algorithm pre-
dictions for all possible coalitions of players within the 
team, or all possible subsets of attributes [6]. Formally, let 
us assume that we have a predictor f(M) which depends 
on a set of attributes, M. Further, we assume that we can 
define the prediction for any subset of attributes, S, con-
tained within a set of all available attributes M. The SV 
for an attribute j contained in M is

https://anaconda.org/powerai/aix360
https://anaconda.org/powerai/aix360
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It has been demonstrated that SVs satisfy several axi-
oms which have intuitive interpretations in the molecular 
diagnostic test setting:

a. Efficiency or local accuracy The sum of the SVs over 
all attributes, including the null set, is the algorithm 
prediction, i.e., 

∑|M|
j=0 ψj

(
f
)
= f (M).

b. Symmetry Two attributes that contribute equally 
to all possible coalitions have equal SVs. i.e., if 
f
(
S ∪

{
j
})

= f (S ∪ {i}) for every subset S not 
including attributes i or j, ψj

(
f
)
= ψi

(
f
)
.

c. Dummy player or missingness An attribute that con-
tributes nothing to any coalition has zero SV. i.e., if 
f
(
S ∪

{
j
})

= f (S) for every subset S not including j, 

ψj

(
f
)
= 0.

In the case of our investigation of the SVs of the VS 
test, the predictor f is a 7NN classifier using a 26-mem-
ber reference set. Possible output predictions are f = −1 
(corresponding to a Poor classification) or f = 1 (a Good 
classification). Exact SVs were calculated using 7NN clas-
sifiers with all  28 (= 256) possible subsets of the eight fea-
tures from Eq. 1. The value of f when no features are used 
(the null set) is defined as uninformative, i.e., f ({∅}) = 0.

Exact Shapley interaction indices
In molecular diagnostics studies, the question some-
times arises what information feature i adds to another 
feature j. Alternatively, we may be interested in predictive 
information contained in the interaction of two features, 
for example an outcome that can be predicted by a low 
value of feature i only when feature j has a high value. 
We investigated three expressions proposed to charac-
terize the importance of pairs of features, or interac-
tions, for classification: Shapley interaction indices [14], 

(1)

ψj

(
f
)
=

∑
S ⊆M\{j}

|S|!(|M|−|S|−1)!
|M|!

(
f
(
S ∪

{
j
})

− f (S)
) Shapley-Taylor interaction indices [16], and two-feature 

Harsanyi dividends [7].

Shapley interaction indices (SIIs)
The SII for features i, j

(
i  = j

)
 [14] is defined as

A main effects term, SIIii
(
f
)
 can be defined as the dif-

ference between ψi and the sum over all interaction terms 
involving feature i:

Shapley‑Taylor interaction indices (STIIs)
The STII for the subset of two features i, j

(
i  = j

)
 [16] is 

defined as

A main effects term for i = j [16] can also be defined as

Note that [16] defines the STIIs and SIIs for a subset of 
two features rather than for a pair of indices. Hence, [16] 
defines SIIs as twice the quantity in Eq. 2. In this paper, 
we maintain the original definitions of SIIs from [14] and 
STIIs from [16].

Harsanyi dividends (HDs)
The HD for two features i, j

(
i  = j

)
 [7] is defined via the 

expression

Shapley partial sums (SPSs)
In addition to the three expressions above, we defined 
a fourth quantity to capture the impact of features 
i, j

(
i  = j

)
 on classification, the Shapley partial sum, SPS. 

SIIs, STIIs, and HDs are all symmetric in i and j by con-
struction. It is generally unlikely that the impact on a 

(2)SIIij
(
f
)
=

∑

S ⊆M\{i,j}

|S|!(|M| − |S| − 2)!

2(|M| − 1)!

[
f
(
S ∪

{
i, j
})

− f (S ∪ {i})− f
(
S ∪

{
j
})

+ f (S)
]

(3)SIIii
(
f
)
= ψi −

∑
j �=i

SIIij
(
f
)
.

(4)STIIij
(
f
)
=

∑

S ⊆M\{i,j}

2|S|!(|M| − |S| − 1)!

|M|!

[
f
(
S ∪

{
i, j
})

− f (S ∪ {i})− f
(
S ∪

{
j
})

+ f (S)
]
.

(5)STIIii
(
f
)
= [f ({i})− f ({∅}) ].

(6)
HDij

(
f
)
= f

({
i, j
})

− f ({i})− f
({

j
})

− 2f ({∅}).
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classifier of adding feature i to feature subsets including 
feature j will be identical to that of adding feature j to fea-
ture subsets including feature i, and it may be of interest 
to assess these two quantities.

Note that ψj

(
f
)
 can be split into two separate sums, one 

containing only feature subsets including feature i and 
one containing only feature subsets not including feature 
i, Eq. 7.

The first term in Eq. 7 captures the contribution of fea-
ture j to coalitions including feature i, i.e., the contribu-
tion to the classification of feature j when used together 
with feature i. Hence, we defined the SPSij

(
f
)
 for i  = j as

Note that, unlike the three kinds of interaction evalu-
ated above, SPSij is not symmetric in the indices i and j, 
i.e., SPSij

(
f
)
 = SPSji

(
f
)
 . This corresponds to the notion 

that if we have two correlated features that share some 
information useful for classification, but one of the fea-
tures is superior in information content to the other, the 
benefit of adding the lower information content feature 
once we have already used the higher information con-
tent feature is smaller than the benefit of adding the 
higher information content feature once we have already 
used the lower information content feature.

SHAP methods
SHAP approaches are based on replacing retraining of 
the classifier on feature subsets with conditional expecta-
tions of the original algorithm result [13]. Formally, if we 
consider the case where the input data is a vector, x, of 
dimension |M|, and our algorithm is f (M) = g(x) , SHAP 
replaces the prediction f ({S}) for a sample with input 
vector x∗ , by E[g(x)| xi = x

∗

i
, for i ⊆ {S}] where E[.] 

is the expected value. While this approach seems intui-
tively very reasonable, it may not be clear what is meant 
by the expected result of the algorithm output condi-
tional on the feature values being maintained within the 
subset S [26]. This is particularly problematic when the 
input data are continuous and the training set is small. 
While the training set necessarily defines the prediction 
algorithm, in cases of molecular diagnostics it may  be 

(7)

ψj

(
f
)
=

∑

S⊆M\{i,j}

|S + 1|!(|M| − |S + 1| − 1)!

|M|!

(
f
(
S ∪

{
i, j
})

− f (S ∪ {i})
)

+
∑

S ⊆M\{i,j}

|S|!(|M| − |S| − 1)!

|M|!

(
f
(
S ∪

{
j
})

− f (S)
)

(8)SPSij
(
f
)
=

∑

S ⊆M\{i,j}

(|M| − |S| − 2)!(|S| + 1)!

|M|!

[
f
(
S ∪

{
i, j
})

− f (S ∪ {i})
]
.

unrepresentative of the population of samples to be clas-
sified and it is often small and of high dimensionality 
such that adequate estimation of the distribution over 
which to calculate the expectation can be difficult or 
impossible.

We tested three different SHAP-based approaches: 
kernel SHAP [13], which treats features as independent, 
and two versions of SHAP that allow incorporation of 

correlations between features, the multivariate Gauss-
ian approximation and the Gaussian copula approxima-
tion [12]. These three approaches are described below in 
increasing order of complexity of implementation and 

capacity to approximate inter-feature correlations.

Kernel SHAP
Kernel SHAP values [13] were calculated following 
method 2.3.2 of [12]. The predictions f(S) in Eq.  1 were 
replaced by their expectation value in order to avoid 
retraining. In kernel SHAP, features are assumed to be 
independent (an inaccurate assumption in the case of 
the VS test and most -omics datasets, where correlations 
between features are common). For a given instance and 
feature subset S, the expectation value of f(S) is calcu-
lated using all 26 reference samples as follows: maintain 
instance feature values for features in S, replace instance 
feature values outside S by the feature values from one of 
the 26 reference samples, classify the results, repeat for 
the other 25 reference samples and average the 26 result-
ing classifications.

We note here that, as pointed out by Kumar et al. [26], 
replacing the features outside of S by feature values for 
these features from the training set, or by features drawn 
from a distribution defined by the training set, indepen-
dently from the features in S, can lead to evaluations of 
the algorithm in regions of feature space which the algo-
rithm never experienced during training and which may 
not even be spanned by real, physical samples. This is 
indeed the case for the VS algorithm where the correla-
tions between features are strong.
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Multivariate Gaussian feature distribution
The multivariate Gaussian SHAP approximation method 
incorporates feature dependence by assuming that the 
feature distribution is a multivariate Gaussian and esti-
mating the parameters of the distribution from the train-
ing set. Given the Gaussian assumption, the distribution 
of features not in S conditional on the feature values of 
features in S can be explicitly calculated. The expectation 
value of a prediction f(S) is then calculated by drawing n 
samples from this conditional distribution, classifying the 
samples, and averaging the results. We followed method 
3.1 in Aas et  al. [12], using all 26 reference samples to 
estimate the parameters of the multivariate Gaussian dis-
tribution and drawing N = 1000 samples to estimate each 
expectation value.

Gaussian copula
The Gaussian copula SHAP approximation method 
builds on the multivariate Gaussian method to allow esti-
mation of the conditional distribution for a non-normal 
feature distribution via transformation of variables with a 
probability integral transform (PIT) to a copula assumed 
to be Gaussian. We followed method 3.2 of Aas et  al. 
[12], again using all 26 reference samples to estimate 
distribution parameters. Briefly, the multivariate feature 
distribution is mapped using the probability integral 
transform (PIT), maintaining pairwise correlations using 
the copula approach. Under the assumption that the 
copula is Gaussian, the distribution of features not in S 
conditional on the feature values of features in S can be 
evaluated. Samples can then be drawn from the resulting 
conditional distribution, mapped back via the inverse PIT 
and classified before averaging to give the conditional 
expectation. We drew N = 1000 samples to estimate each 
expectation value.

LIME methods
LIME explanations were calculated following the method 
of Ribeiro et  al. [5]. The LIME approach constructs a 
local interpretable model, i.e., a simplified model, that 
allows easy determination of feature importance and 
which reproduces the results of the more complex test at 
the feature space location of the sample, using data from 
the feature space vicinity of the sample for which the test 
result is to be explained. In this study, as we are work-
ing with binary classification, we selected logistic regres-
sion or a support vector machine (SVM) as the local 
interpretable model. In the case of the logistic regres-
sion modelling, the regression coefficients can be taken 
as representative of the relative importance of each fea-
ture for the classification of an instance. For a SVM, the 
coefficients defining the vector perpendicular to the SVM 

decision boundary provide a measure of relative feature 
importance for classification [27].

In implementing the LIME approach, the problem 
arose how to generate truly local models for instances 
lying within the bulk of Good or Poor classification 
regions of feature space. Instances with both classifica-
tions are required to train the local models, but in the 
bulk of one of the feature space classification regions, 
local variations about the point of interest in feature 
space only produce instances with the same classification. 
Hence, to be able to train a model, the definition of local 
must be relaxed to cover a substantial fraction of feature 
space; the resulting model is no longer a local one.

To make the coefficients obtained from the trained 
local models interpretable, the features used in the VS 
test were first standardized. For each sample x, the log of 
each feature value xi was taken and standardized by sub-
tracting the median log feature value x̃i and dividing by 
the scaled interquartile range σi = IQR/1.35 of the log 
feature value.

To generate permutations for local model training, val-
ues zi were drawn from a normal distribution with mean 
0 and width 1 and then transformed into feature values 
for Good and Poor permutations through

where σiG/P = IQRiG/P/1.35 , IQRiG/P is the interquar-
tile range for feature i as estimated from the Good (G) 
and Poor (P) VS reference samples separately, and x̃i,G/P  
is the median log feature value as estimated from the 
Good (G) and Poor (P) VS reference samples separately.

Correlations between features were ignored. In total, 
1 ×  106 permutations were generated: 5 ×  105 permuta-
tions were generated using median and interquartile 
range values taken from the 13 Good reference sam-
ples and 5 ×  105 permutations were generated using the 
13 Poor reference samples. Permutations were classi-
fied as Good or Poor and those whose classification did 
not match the distribution from which they were drawn 
(~ 10% of the total) were discarded. Weights for each 
remaining permutation were calculated using a Gaussian 
distance kernel:

where the distance between the sample and permuta-
tion d is the Euclidian distance calculated in standardized 
space and the width σ is the mean distance d  over all 
usable permutations (for logistic regression) or half the 

zi =
log (xi)− x̃i

σi

xiG/P = exp
(
σiG/Pzi + x̃i,G/P

)

w = exp
(
−d2/σ 2

)



Page 7 of 18Roder et al. BMC Med Inform Decis Mak          (2021) 21:211  

mean distance (for SVM). The local interpretable mod-
els (weighted logistic regression or weighted SVM) were 
then trained. The LIME explanations were taken as the 
regression coefficients of the standardized features for 
the logistic regression and coefficients of the standard-
ized logged features of the vector perpendicular to the 
decision plane of the SVM.

It was not possible to train more local models, defined 
by smaller σ , for all instances in the cohort, as we need 
to adequately sample instances with both classifications 
for the training set. It was possible to reduce σ to create 
explanations for instances very close to the boundary. 
These results, and others obtained for different parameter 
choices, are contained in Additional file 1: Figs. S11-S13.

Results
Exact Shapley values
Exact SVs for a single replicate (“instance”) classifica-
tion result, generated for pretreatment samples for a 
cohort of 256 patients with NSCLC (189 Good, 67 Poor), 
were calculated according to the standard SV definition 
(Eq. 1). The Poor classification was taken to correspond 
to a numerical result of − 1 and the Good classifica-
tion to a numerical result of + 1. The SVs for each of 
the eight mass spectral features (centered at 5843  Da, 
11,445 Da, 11,529 Da, 11,759 Da, 11,903 Da, 12,452 Da, 
and 12,579 Da) are shown in the heatmaps of Fig. 1, sepa-
rately for Good and Poor instances.

As expected from the concept of sample-specific fea-
ture importance, features contribute differently to the 

classification of different instances. While all instances 
in each respective heatmap (Fig. 1a or Fig. 1b) have the 
same classification, the VS 7NN algorithm does not 
arrive at these results using the features in the same way 
for all instances. However, some structure is apparent. 
Considering general patterns across instances, both Poor 
and Good heatmaps show that there is a substantial num-
ber of instances, more in the Goods (39%) than in the 
Poors (19%), where the SVs for all features are equal (with 
a magnitude of 1/8). We denote these as “uniform” Good/
Poor instances. In terms of patterns across features, the 
features 11,529 and 11,686 have the largest SVs in general 
(more pronounced in the Poor instances (Fig.  1b)). The 
SV for the 11,685 feature is equal to the SV for the 11,529 
feature for 246/256 instances, indicating equal impor-
tance of these two attributes. For almost all instances 
(255/256), the SVs for these two features have magni-
tudes of at least 1/8. We denote the ten instances where 
the SVs of these two features are not equal as “boundary” 
Good/Poor instances.

We first discuss the interpretation of the SVs for the 
uniform instances. The uniform Good instances have all 
eight SVs equal to 1/8 and the uniform Poor instances 
have all eight SVs equal to − 1/8 (instances at the bot-
tom of the heatmaps of Fig.  1). The equal SVs for these 
instances indicate equal importance of each of the eight 
features in the classification algorithm. The equal impor-
tance of all features is also seen in the example of Fig. 2a, 
in which the 7NN classification resulting from all pos-
sible subsets of features is shown for a uniform Good 

Fig. 1 SV heatmaps for a Good and b Poor instances. Each row represents one instance and each column represents one feature. Rows (instances) 
are sorted by absolute value of the SV of the 11,685 feature, and this ordering is maintained throughout subsequent figures
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instance. Each column represents a feature, and each row 
represents a feature subset. Within each row, features 
not included in the subset are colored white, and those 
that are included are colored according to the classifica-
tion that results from that row’s feature subset (blue for 
Good, red for Poor). For uniform instances (Fig. 2a), all 
feature subsets, except the null set (where the classifica-
tion is uninformative = 0) produce the same classification 
as the full set of features, all features play equivalent roles 
and, via the SV axioms and Eq. 1, must have SVs of equal 
magnitudes of 1/8 (see e.g., Fig. 2b).

Further understanding can be obtained from con-
sidering the position of the different instance types in 
feature space with respect to the decision boundary. Fig-
ure  3 shows a t-distributed stochastic neighbor embed-
ding (t-SNE) plot [28] of the VS feature values for the 
256 instances indicating uniform Good, uniform Poor, 
boundary Good, boundary Poor, and the remaining non-
uniform Good and Poor instances. The Good and Poor 
instances separate into distinct regions. The uniform 
instances, with SVs of magnitude 1/8, lie in the bulk of 
the Good region and toward the far reaches of the Poor 
region.

The ten boundary instances, for which the SVs differ 
for the 11,529 and 11,685 features, lie on the boundary 
between Good and Poor classification regions of feature 
space in Fig.  3. For boundary instances, the 11,529 and 
11,685 SVs can be of opposite sign, indicating that one 
feature influences classification towards a Good result 
and the other towards a Poor result. Differences in sign 
and large magnitudes are also observed for SVs of other 
features for boundary instances (see Figs. 1, 2 and Addi-
tional file 1: Fig. S8 for corresponding plots for additional 
instances). As the test decision boundary is approached, 
the SVs are sensitive to the interplay of the precise fea-
ture values, and small changes in feature value can lead 
to large changes in SV. This is not unexpected, given the 
strong nonlinearity of k-nearest neighbor (kNN) clas-
sification and the discontinuous nature of classification 
change at kNN decision boundaries [29].

The SVs for individual instances can also be repre-
sented by radar plots, which visually indicate the rela-
tive importance of features for the classification of an 
instance (Fig.  2b, d, f ). For example, Fig.  2d illustrates 
that, even away from the decision boundary, features 

can act antagonistically in non-uniform instances: While 
the classification Good is dominated by the 11,529 and 
11,686 features, features 12,579 and 12,452 would tend to 
classify this Good instance as Poor.

We assessed the reproducibility of SVs across samples 
with concordant replicate classifications (250/256 sam-
ples). SVs are compared between the first two replicates 
in Fig. 4 (other comparisons between the 3 replicates can 
be found in Additional file 1: Fig. S9). For most samples, 
SV reproducibility is very good, indicating a reliable and 
consistent attribution of feature importance for classifi-
cation between technical replicates. A few samples, how-
ever, show larger variation in the SVs between replicates. 
These samples lie close to the test decision boundary.

Exact Shapley interaction indices and Harsanyi dividends
To assess the importance of pairs of features to the clas-
sification from the VS algorithm for each instance, we 
evaluated three previously proposed quantities: SIIs [14], 
STIIs [16], and HDs [7]. (Note that while SIIs and STIIs 
evaluate the contribution of features i and j in the context 
of coalitions of other features, HDs only consider features 
i and j in isolation.) The results are shown in the heatmap 
of Fig. 5 for all pairs of distinct features, i, j

(
i  = j

)
 for six 

instances: a uniform Good, a non-uniform Good and a 
boundary Good instance and corresponding examples of 
Poor instances.

For the uniform instances, the SIIs, STIIs, and HDs are 
− 1/14, − 1/4, and − 1 for Good instances and + 1/14, 
+ 1/4, and + 1, for Poor instances, as can be seen from 
Eq.  2–Eq.  4 when all feature subset 7NN classifiers, 
apart from the empty subset, produce the same classi-
fication. Although the uniformity of the classifications 
is reflected by equal results for all pairs of features, the 
signs and magnitudes of the results do not reflect very 
intuitively the notion that the 7NN classifiers for feature 
subset {i} ∪ S , feature subset 

{
j
}

∪ S and feature subset {
i, j
}

∪ S all yield the same classification for all feature 
subsets S not including i or j. Non-uniform samples gen-
erally display less-intuitive interaction terms. The lim-
ited interpretability of the interaction terms is, at least in 
part, due to the categorical nature of the classification. In 
the case of this binary classification, each single feature 
subset classifier produces one of the two binary results. 
Consider the coalition of two features, each of which 

(See figure on next page.)
Fig. 2 Schematic of the classifications of all  28 (= 256) feature combination 7NN classifiers. We show a a uniform instance, c a nonuniform instance, 
e a boundary instance. Each heatmap row represents one feature subset 7NN classifier (increasing in subset size from top to bottom). Each column 
represents one of the eight features. Feature subsets not including the column feature are indicated in white; the 7NN classification result for feature 
subsets including the column feature are shown as Good (blue) or Poor (red). Corresponding radar plots (b, d, f) show the SVs for each instance. 
Magnitude is represented by radial extent and sign by color (positive as blue and negative as red)
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Fig. 2 (See legend on previous page.)
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individually produces the same classification result as 
the full algorithm. The coalition of the two features can 
also only produce either that same result or the opposite 
result, i.e., it cannot produce a ‘better’ result than either 
of the single feature results. This leads to the interaction 
indices and Harsanyi dividends having opposite sign to 
the standard SV for the uniform instances.

STIIs provide a way of assessing main effect terms, in 
addition to the interaction between the two features. The 
main effect STIIs are + 1 or − 1, the classification for the 
individual feature 7NN classifier (Eq. 5). Main effect-like 
terms can also be constructed using the SII approach 
(Eq. 3), and these are ± 5/8 for Good and Poor uniform 
instances, respectively, for which the interpretation is 
again not very intuitive.

To assess the impact to classification of adding feature i 
to feature subsets including feature j, we calculated SPSij. 
For uniform instances, the SPS is 0 for all i, j

(
i  = j

)
 , cor-

responding to no change in classification from the inclu-
sion of feature i in addition to feature j for all i, j

(
i  = j

)
. 

It also follows from Eq. 6 that SPSij = 0
(
i �= j

)
 for non-

uniform instances when all 7NN subset classifiers con-
taining feature j yield the same classification (e.g., 11,529 
and 11,685 for sample 1079 and 11,529 for sample 1209 
in Fig. 2).

SHAP
We calculated SHAP-based approximations to SVs using 
kernel SHAP, the multivariate Gaussian approximation 
and the Gaussian copula approximation. For molecular 
data in general, and for the case of VS features in par-
ticular, we expect the multivariate feature distribution to 
be non-Gaussian with complex correlational structure. 
While we do not expect any real-world multivariate fea-
ture distribution to match the distributions which allow 
approximations of the conditional distribution needed 
for the SHAP approach, it is of interest to see how the 

Fig. 3 t-SNE plot of the eight VS features for all 256 instances. 
Uniform instances (|SVs|= 1/8) are shown in red (Poor) and dark blue 
(Good). Boundary instances are shown as large black (Good) and 
green (Poor) symbols. Other (non-uniform) instances are shown in 
pink (Poor) and light blue (Good)

Fig. 4 SV reproducibility between technical replicate 1 and 2 for 250 samples with concordant replicate classifications. a Replicate 1 SVs versus 
replicate 2 SVs for each feature and each sample. b Histogram of normalized counts (counts/#features x # samples) of perpendicular distance from 
each point in a to the y = x line
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results of these methods of increasing complexity com-
pare with exact SVs.

The SVs calculated using kernel SHAP, the multivari-
ate Gaussian approximation and the Gaussian copula 
approximation are compared with the exact SVs for the 
256-instance cohort in Figs. 6 and 7 for Good and Poor 
instances, respectively.

None of the SHAP approaches reproduce the exact 
SVs. Kernel SHAP identifies 11,529 and 11,685 as dom-
inant features in classification to the almost entire 

exclusion of contributions of other features. This is likely 
due to the combination of these two features being larg-
est in magnitude and the independent feature approxi-
mation meaning that the expected value is largely an 
average over sets of feature values never realized in the 
data obtained for real instances [26]. Kernel SHAP fails 
to recover the subset of instances with uniform exact 
SVs, and it produces SHAP values that are very similar 
for nearly all Good instances. Inclusion of some corre-
lations between features via the multivariate Gaussian 

Fig. 5 Heatmaps of interactions for representative instances. a Shapley interaction indices (SIIs), b Shapley-Taylor interaction indices (STIIs), c 
Shapley partial sums (SPSs), d Harsanyi dividends (HDs)
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method weakens the extreme dominance assigned to 
the 11,529 and 11,685 features, especially in the Poor 
instances. The Gaussian copula approach, which allows 
for non-normal feature distributions, but maintains only 
pairwise correlations, further improves the SHAP val-
ues relative to the exact SVs. The mean square difference 
between the SHAP approximations and the exact SVs for 
the cohort, averaged over both instances and features, 
is 0.0455 for kernel SHAP, 0.0263 for the multivariate 
Gaussian approximation, and 0.0243 for Gaussian copula 
approach (Additional file 1: Fig. S10). We observed that 
for the multivariate Gaussian approach and the Gauss-
ian copula approach, the mean square difference for the 
uniform instances between the results and the exact SVs 

were 0.0123 with standard error 0.0002 and 0.0044 with 
standard error 0.0003, where standard errors were evalu-
ated over multiple subset samplings. Hence, even using 
the Gaussian copula approach, there remain substantial 
qualitative differences (fewer instances with uniform SVs, 
fewer instances with equal SVs for the 11,529 and 11,685 
feature, lower SVs on average for 5843, 12,452 and 12,579 
features) between the SHAP values and the exact SVs 
that could lead to different interpretations of the relative 
importance of the features for the classifications of many 
samples.

As it can be demonstrated that exact SVs are the only 
additive feature attributions that satisfy certain desirable 
axioms [6, 11] and the SHAP approximations differ from 

Fig. 6 Heatmaps of exact SVs and SHAP values for the 189 Good instances. a Exact SVs, b kernel SHAP values, c multivariate Gaussian SHAP values, 
and d Gaussian copula SHAP values
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the exact SVs, at least one of the axioms must be violated 
by the SHAP approximations. Our results show violation 
of the symmetry, which requires that when two features 
contribute equally to all possible coalitions, i.e., when 
f (S ∪ {i}) = f

(
S ∪

{
j
})

 for every subset S that does not 
contain i or j, the SVs for the two features should be 
the same. From Fig. 2, we see that for the uniform sam-
ple (1079) and the non-uniform, non-boundary sample 
(1030), f (S ∪ {11529}) = f (S ∪ {11685}) for all S exclud-
ing features 11,529 and 11,685. However, none of the 
methods produces equal SHAP values for these samples, 
although the Gaussian copula SHAP values are close.

LIME
The LIME explanations obtained for the 256-instance 
cohort are shown in Fig.  8 for logistic regression and 
SVM as the local interpretable model. We see little vari-
ation in explanations across instances, reflecting the very 
loose definition of locality required to obtain explana-
tions for all instances, as was discussed in the Methods 
section. Good instances show a very uniform relative 
feature importance across all eight features, while Poor 
instances are characterized by much stronger impor-
tance for the 11,529 and 11,685 features. In the bound-
ary region, where we observed the boundary instances 

Fig. 7 Heatmaps of exact SVs and SHAP values for the 67 Poor instances. a Exact SVs, b kernel SHAP values, c multivariate Gaussian SHAP values, and 
d Gaussian copula SHAP values
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with their characteristic highly variable exact SVs, one 
can generate instances of different classification with 
local variation in features. However, it should be noted 
that here the VS algorithm is highly nonlinear, and a 
linear model is unlikely to provide an accurate local 
approximation.

While one does not expect a quantitative correspond-
ence of LIME explanations with SVs, i.e., they are not a 
direct approximation, we do not observe even a good 
qualitative correspondence in feature importance 
assignment.

Discussion
We have shown how the SV approach to model explain-
ability can be applied to a molecular diagnostic test. The 
simple nearest neighbor algorithm used for the VS test 
allowed calculation of exact SVs for each of the eight VS 
features for a large cohort of samples obtained from a 
population of patients with NSCLC. The exact SVs pro-
vided an explanation of the relative importance of the 
eight features to the classification generated by the VS 
algorithm for each instance and showed good reproduc-
ibility between instances.

Fig. 8 Heatmaps of LIME explanations. Logistic regression (a Good instances and c Poor instances) and an SVM (b Good instances and d Poor 
instances) are used as the local interpretable models
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As was expected given the highly nonlinear nature of 
nearest neighbor classification, the relative importance 
of the features varied across the cohort. While the clas-
sification of a substantial proportion of instances (39% 
of Good instances and 19% of Poor instances) was con-
trolled equally by all eight features, other instances had 
different patterns of feature importance, with instances 
close to the boundary between Good and Poor classi-
fied feature space regions showing the most variability 
and most extreme differences in SVs and hence most 
extreme differences in relative feature importance in 
determination of classification. Two features, 11,529 
(related to C-reactive protein and isoforms of SAA) and 
11,685 (C-terminal truncated SAA isoform) generally 
had more than average importance in determination of 
classification.

Being able to calculate exact SVs enabled us to com-
pare these results with various approximations that are 
being increasingly used to provide information on feature 
importance for classification in cases where exact SV cal-
culations are computationally prohibitive (see, for exam-
ple, [30–33]). SHAP values were evaluated using kernel 
SHAP and two other extensions allowing incorporation 
of feature correlations excluded in kernel SHAP. None of 
these approaches produced results close to the exact SVs 
and they showed qualitative differences across the evalu-
ation cohort.

While our specific example might be particularly 
challenging for these approximate methods, due to the 
highly nonlinear algorithm and the strong correlation 
between features, the qualitative and quantitative dif-
ferences we observed from the exact SVs raise some 
concerns, given the ubiquity of correlations between 
features in clinical and -omics data and nonlinearities 
that facilitate knowledge extraction in modern ML. In 
addition, distributional-based approaches and methods 
that require assessment of correlations between features 
may be of limited utility in settings where training sets 
are small compared with the number of features used or 
are unrepresentative of patient populations. Both situ-
ations are not uncommon in clinical test development: 
practical constraints on clinical and observational study 
sizes often permit only relatively small test development 
cohorts and researchers sometimes compare extremes 
in outcomes rather than whole populations to elucidate 
features useful for classification and train ML algorithms. 
Hence, it might be wise to exercise caution in the inter-
pretation of the results of SHAP-based approximations 
to SVs in the case of molecular tests using correlated fea-
tures, especially if test algorithms are strongly nonlinear 
or training sets are small and allow only poor estimates 
of feature distributions and their correlational structure. 
Unfortunately, we are not aware of any methods that 

allow estimation of the deviations of SHAP-based feature 
importance attributions from exact SVs when the latter 
cannot be evaluated. Even if it is computationally expen-
sive, it might be useful, if possible, to compute exact SVs 
for a few samples to compare with the approximate SVs; 
alternatively, results could be compared for a few samples 
between a desired approximation method and another 
with more relaxed distributional assumptions that 
requires more extensive compute time (e.g. multivariate 
Gaussian vs Gaussian copula), to provide at least a pre-
liminary test of the reliability of the results of the simpler 
approximation method.

The LIME approach presented different issues in pro-
viding adequate explanations for feature importance for 
classification. The categorical nature of the VS classifica-
tion, the well separated classification regions of feature 
space, and strong nonlinearity near the test decision 
boundary, all hampered definition of truly local interpret-
able models. Small training set size and lack of mainte-
nance of feature correlations in local model construction 
would likely also be problematic when trying to use the 
LIME approach to explain other omics-based tests.

It is often of interest in a molecular diagnostic setting 
to examine the influence of pairs or subsets of features 
used simultaneously in a predictive algorithm. Hence, we 
investigated several quantities that have been proposed 
to assess feature interactions. SIIs, STIIs, and HDs could 
all be calculated exactly for the VS algorithm. However, 
the results were not very easy to interpret. We believe 
that this interpretational challenge arises from the binary 
nature of the VS classification; however, we anticipate 
that similar issues would arise for any categorical test and 
for classifiers with bounded outputs, for example when 
predicting risk or producing scores on a bounded scale. 
We proposed the idea of SPSs to examine the importance 
for classification of a feature i included in an algorithm in 
addition to a second feature j as an alternative metric for 
investigating the relative impact on classification of two 
features.

While SVs are useful to explain how patient data is 
converted to a test result by a specific test algorithm, it 
does not directly provide any information on the biologi-
cal underpinnings of the test. Prediction is a task distinct 
from estimation and attribution, as discussed in detail 
by Efron [34], and good predictors can be created from 
molecular measurements or clinical attributes that do 
not directly represent the biological processes at play but 
are merely associated with them. Translational studies 
remain essential for exploring the biological mechanisms 
behind the performance of molecular tests. Nevertheless, 
SVs may inform such translational studies, because they 
may divide the groups of samples with identical test clas-
sifications into subgroups which use different patterns 



Page 16 of 18Roder et al. BMC Med Inform Decis Mak          (2021) 21:211 

of features to arrive at the same classification label [14]. 
Even in the example of the VS algorithm, with only eight 
strongly correlated features, we observed uniform and 
non-uniform patterns of SVs, and one might expect to 
identify more SV-defined classification subgroups in tests 
that involve more molecular attributes. If one assumes 
that there are underlying biological mechanisms reflected 
in a classification, then a necessary corollary is that there 
may be different biological mechanisms corresponding to 
the different patterns of SVs. Hence, it could be of inter-
est to study SV-defined classification subgroups using a 
translational approach in sample cohorts large enough to 
be able to reliably  identify these subgroups and investi-
gate their biological associations.

While SVs may inform feature importance considera-
tions during an iterative test development process, we 
note that SVs can only reflect the feature importance in 
determining the classification for a specific classifier. 
Other classifier architectures may be more or less effi-
cient in combining attributes, combine attributes in dif-
ferent ways, and may lead to different patterns of SVs. 
There are also challenges in using SVs for feature selec-
tion or feature optimization for classifier development 
when features are correlated, as discussed in detail by 
Kumar et al. [26]. Hence, the SVs for a particular model 
cannot, in general, reliably predict whether the perfor-
mance of the model will get better or worse if certain 
features are excluded or included; however, it will be the 
case that when ψi = 0 for all instances, feature i does 
not play any role in classification and therefore could be 
excluded from the model. There are also additional fac-
tors that should be considered in test design and develop-
ment, and features may be included in a test based not 
only on their relative importance for generating a predic-
tion, but also on their ability to improve the reproduc-
ibility or robustness of the test. There remain important 
aspects of test interpretability that cannot be addressed 
directly by SVs, including causality [26], which could be 
important for patients, physicians and regulators [35].

We have illustrated some limitations of approximations 
to SVs and hence shown the utility of being able to calcu-
late exact SVs. It has already been observed that certain 
ML architectures facilitate SV calculations, e.g., treeS-
HAP [14]. The additive axioms satisfied by SVs facilitate 
SV calculations for tests based on ensemble averages, and 
ML methods based on regularized combinations of small 
coalitions of features also present the possibilities of exact 
SV calculations for tests which include large numbers of 
features [36–39]. Systematic studies of the convergence 

of sampling-based approximations to exact SV calcula-
tions for models with these architectures are underway.

Conclusions
Exact SVs can be used to determine the relative impor-
tance of features to the classification generated by a mul-
tivariate model for a specific sample or patient. In the 
same way that physicians diagnose some diseases using 
different weightings of clinical factors for individual 
patients, the patterns of SVs may vary between sam-
ples receiving the same classification from a molecular 
diagnostic test. Patient subgroups defined by these SV 
patterns may be of interest for translational research, 
because they may reflect different biological mecha-
nisms giving rise to the same classification result. SHAP 
approximations may differ both qualitatively and quan-
titatively from exact SVs when correlations between fea-
tures are important, and so, in general, caution is advised 
when applying SHAP approximation methods to explain 
the results of molecular diagnostic tests.

This study discusses the interpretation of SVs, inter-
action SVs, and the differences between exact SVs and 
various commonly used approximations to SVs using the 
example of one molecular diagnostic test with specific 
ML architecture and training set feature distribution. 
Although the general principles of utility and interpre-
tation of exact SVs and interaction SVs will not depend 
on the details of the test to be explained, it would clearly 
be of interest to investigate calculation of SVs and differ-
ences between exact SVs, SHAP-based SV approxima-
tions and LIME in a large scale, systematic study that 
would investigate different ML architectures and span 
attribute distributions with various correlational struc-
tures, via use of synthetic datasets and multiple types of 
real-world molecular data. Future research could also 
focus on how best to present SV information to physi-
cians and patients and how to use SV analysis to inform 
translational studies designed to address the mechanisms 
of action of molecular diagnostic tests and fundamental 
biology of the disease indications in which the tests are 
employed.
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