
Dynamic Observability 
for Cloud Native Applications 
and Environments
By Bernd Harzog

https://stackstate.com/


1© StackState 2021 | www.stackstate.com

Table of contents

Dynamic Observability for Cloud Native Applications Page - 1

The Challenges Created by Digital Transformation Page - 2

The Consequences of Poor Digital Experience Page - 4

The Current State of Monitoring and Incident Management Page - 6

Enter Dynamic Cloud Observability Page - 8

The Value of Dynamic Observability Page - 9

About StackState Page - 10

The rate of change in applications, the complexity and diversity of the 

infrastructure supporting these applications, and the dynamic behavior in 

modern cloud-based infrastructures create unprecedented challenges for 

Site Reliability Engineers (SREs) seeking to ensure the performance and 

reliability of their online services.

Dynamic Observability for 
Cloud Native Applications 

and Environments

https://stackstate.com/


© StackState | www.stackstate.com 3

Enterprises globally are implementing their core customer, prospect, partner, supplier, and 

employee facing processes in software. This means that every enterprise is becoming a 

software company with the need to build software, test software, operate software in 

production, and most importantly continuously enhance this software to keep it  

competitive and to respond to requirements from the users of the software.

 

This demand on the part of companies worldwide for software engineering well exceeds 

the supply of available software engineers and results in continuous stream of innovations 

designed to speed the development of software and the delivery of software into 

production:

•	 Kubernetes	automates	the	process	of	

orchestrating	groups	of	containers	as	

needed	to	respond	to	changes	in	demand	

and	other	conditions

•	 Databases	proliferated	in	order	to	meet	

the	needs	for	various	data	models,		

scalability	needs,	performance	needs,	

data	types	and	redundancy	requirements	

In summary the response to Digital 

Transformation has created the following 

unprecedented dynamics: 

•	 A	very	high	pace	of	innovation	in		

processes,	tools,	and	platforms

•	 A	high	rate	of	updates	of	application		

software	in	production

•	 A	very	diverse	set	of	languages

•	 A	very	diverse	set	of	runtimes,		

supporting	software	and	databases

•	 A	dynamic	execution	environment	in	

which	services	are	rapidly	scaled	up	and	

down	or	moved	from	one	computing		

resource	to	another

These dynamics together make it extremely 

challenging to support scaled out and highly 

dynamic applications and to ensure a 

consistent user experience.

The Challenges Created by 
Digital Transformation

•	 Agile	Development	breaks	development	into	

smaller	chunks	(sprints)	allowing	for	continuous	

incremental	progress	in	software	development.

•	 DevOps	makes	supporting	software	in		

production	more	effective	and	efficient

•	 CI/CD	automates	much	of	the	process	of		

delivering	software	into	production

•	 New	languages	like	Python,	PHP,	Node-JS,	and	

Go	were	invented	to	speed	the	development	

of	the	classes	of	applications	for	which	these	

languages	are	appropriate

•	 New	runtimes	like	Spring	Boot,	OpenShift	and	

Pivotal	take	progressively	more	of	the	burden	of	

building	and	running	infrastructure	software	off	

of	the	shoulders	of	the	developers

•	 Docker	allows	applications	to	be	isolated	in	

containers	along	with	their	supporting	libraries	

which	smooths	the	process	of	testing	and		

integrating	new	releases	into	production

https://stackstate.com/


© StackState | www.stackstate.com 5

All of this software must be reliable and provide excellent 

end-user experiences or else the enterprise suffers the following 

adverse consequences:

•	 Reductions	in	online	revenue	–	63%	of	consumers	say	they	

often	abandon	a	brand	when	the	online	experience	is	poor

•	 Impacts	to	online	company	reputation	–	72%	of	consumers	

say	they	are	loyal	–	until	they	have	a	bad	experience

•	 Impacts	to	customer	experience	–	54%	of	U.S.	consumers	

say	customer	experience	at	most	companies	needs		

improvement

Furthermore, internally time is wasted addressing issues instead 

of enhancing online functionality and business performance. 

Each month, companies experience 5 or more outages, lasting 

an average of 200 minutes and involve 25 or more employees 

to resolve. Therefore the time and people cost of responding to 

incidents is far higher than it should be.

The Consequences of 
Poor Digital Experience

https://stackstate.com/


© StackState | www.stackstate.com 7

In order to combat the negative impacts of poor 

digital experiences, modern enterprises have turned 

to monitoring tools to help identify and prevent 

performance and reliability issues. In other words, 

if you want it to work, you have to monitor it. You 

have to monitor each layer or component in your 

stack to ensure the following:

•	 That	it	is	working	(up	and	available	to	do	work)

•	 That	it	is	performing	the	work	required	in	the	

required	interval	of	time	(latency	or		

response	time)

•	 That	it	is	performing	the	amount	of	work		

required	per	interval	of	time	(throughput)

•	 That	it	is	not	experiencing	errors	while		

performing	the	required	work

•	 That	it	is	not	experiencing	contention	for		

resources	(CPU,	memory,	network	I/O	and		

storage	I/O)	with	other	software	running	in		

the	environment

•	 That	the	amount	of	resources	available	are	

sufficient	to	meet	the	needs	of	the	component	

(capacity)

There are two basic approaches to 

monitoring business critical applications and  

services in production. The first is to monitor 

the infrastructure for the applications. In the 

world before virtualization and the cloud, 

this means monitoring the physical severs, 

network devices, and storage devices that 

comprised the IT environment. In the modern 

virtualized and cloud world, infrastructure 

means all of the software running in the 

virtualization or cloud environment (the 

operating systems, application frameworks, 

databases, containers and orchestration s

ystems) that supports the applications.

 

The second approach is to monitor the  

operation of the applications themselves. 

This typically involves injecting an agent into 

the application or the run time of the 

application and then measuring the 

performance, throughput and error rate of 

the actual transactions executed by the users 

of the application. APM (Application 

Performance Management) tools are widely 

used to monitor applications in production, as 

are a variety of open source alternatives to  

commercial APM tools like OpenTelemetry 

and Prometheus.

The Current State of Monitoring 
and Incident Management

Each of these tools feeds its alerts and 

incidents into some form of an event 

management, incident management, or 

alert notification system.

 

This existing monitoring and incident  

management process leads to the  

following issues for enterprises:

•	 Every	enterprise	owns	multiple		

monitoring	tools	each	monitoring	a		

layer	or	a	silo	in	the	environment

•	 The	only	integration	of	these	monitoring	

tools	is	typically	that	their	incidents	or	

alarms	are	forwarded	to	a	centralized	

incident	management	system	or	incident	

response	system

•	 Incidents	do	not	contain	the	information	

needed	to	tie	incidents	to	each	other,		

requiring	extensive	drill	down	into	various	

tools	often	occurring	in	physical	or	virtual	

war	room	meetings.

•	 The	number	of	incidents	and	the	time	it	

takes	to	solve	them	is	therefore	generally	

unacceptable	to	the	business.

•	 Therefore	the	cost	in	people	time	and	the	

cost	in	terms	of	business	impact	of	inci-

dents	are	both	unacceptable	to	owners	

of	critical	online	business	services.

https://stackstate.com/


© StackState | www.stackstate.com 9

The traditional focus of Observability is on metrics, logs, and traces. 

Countless vendors who support some combination of metrics, logs, and 

traces all now claim to be Observability vendors.  However, most of these 

vendors supported metrics, logs, and traces before the term 

Observability became fashionable, so for these vendors Observability is 

just a new way of talking about existing capabilities.

Dynamic Cloud Observability breaks new ground by adding the following 

unique capabilities to an Observability platform or solution:

• Real-Time Build (Update) Tracking – Tracking of each new update in 

production, and its resulting changes in platform configuration and 

relationships.

• Real-Time Configuration State Tracking – Tracking of the  

configuration of the application and its entire supporting virtualization 

and cloud infrastructure in real-time over time. 

• Real-Time Relationship (topology) Change Tracking – Tracking of 

the dependencies between transactions, microservices, applications, 

containers, Kubernetes Pods, Kubernetes Nodes, virtualization and 

cloud platforms, and all of the resources (compute, memory,  

networking, and storage) that support each application in real-time 

over time. This means knowing exactly what these relationships are 

and how they changed before, during and after each incident. 

• Root cause based upon AI AND Related Changes. Dynamic Cloud 

Observability means that the AI knows with certainty that a set of 

objects are related to each other and that they all support and affect 

the transaction of interest.  This avoids the false alarms (false  

positives) that result from the AI confusing correlation with causation.

• Incident Prevention – Dynamic Observability uses early detection of 

anomalies to allow for incidents to be entirely prevented and avoided.

Enter Dynamic Cloud 
Observability

The Value of Dynamic 
Observability
Dynamic Observability automatically adds the information needed to resolve 

issues into the existing incident management system. This dramatically 

improves the existing incident management process without disrupting it by 

replacing either the underlying monitoring tools, or the incident 

management tools themselves. These improvements in the incident 

management process lead to:

• 60% reduction in the time to address incidents

• 20% fewer staff needed to fix incidents

• 65% decrease in the number of incidents per month

• And 30% reduction in the cost per incident 

All of which leads to dramatic improvements in online revenue, online 

reputation, and online customer experience.

The deterministic nature of the relationships and configuration changes 

over time are also the necessary pre-conditions to being able to automate 

problem resolution as it is essential to know what impacted what and what 

changed in order to accurately take automated actions.

https://stackstate.com/


About StackState

StackState delivers Dynamic Cloud Observability. StackState integrates with 

cloud platforms, Kubernetes, Prometheus and incident management systems to 

add the certainty and richness of relationships, configuration changes and 

AI-based diagnostics to the existing incident management process. This uniquely 

leads to Deterministic Root Cause, which helps IT teams prevent and solve 

problems more quickly and efficiently. 


