
Dynamic Observability
for Cloud Native Applications
and Environments
By Bernd Harzog

https://stackstate.com/

1© StackState 2021 | www.stackstate.com

Table of contents

Dynamic Observability for Cloud Native Applications Page - 1

The Challenges Created by Digital Transformation Page - 2

The Consequences of Poor Digital Experience Page - 4

The Current State of Monitoring and Incident Management Page - 6

Enter Dynamic Cloud Observability Page - 8

The Value of Dynamic Observability Page - 9

About StackState Page - 10

The rate of change in applications, the complexity and diversity of the

infrastructure supporting these applications, and the dynamic behavior in

modern cloud-based infrastructures create unprecedented challenges for

Site Reliability Engineers (SREs) seeking to ensure the performance and

reliability of their online services.

Dynamic Observability for
Cloud Native Applications

and Environments

https://stackstate.com/

© StackState | www.stackstate.com 3

Enterprises globally are implementing their core customer, prospect, partner, supplier, and

employee facing processes in software. This means that every enterprise is becoming a

software company with the need to build software, test software, operate software in

production, and most importantly continuously enhance this software to keep it

competitive and to respond to requirements from the users of the software.

This demand on the part of companies worldwide for software engineering well exceeds

the supply of available software engineers and results in continuous stream of innovations

designed to speed the development of software and the delivery of software into

production:

•	 Kubernetes automates the process of

orchestrating groups of containers as

needed to respond to changes in demand

and other conditions

•	 Databases proliferated in order to meet

the needs for various data models, 	

scalability needs, performance needs,

data types and redundancy requirements	

In summary the response to Digital

Transformation has created the following

unprecedented dynamics:

•	 A very high pace of innovation in 	

processes, tools, and platforms

•	 A high rate of updates of application 	

software in production

•	 A very diverse set of languages

•	 A very diverse set of runtimes, 	

supporting software and databases

•	 A dynamic execution environment in

which services are rapidly scaled up and

down or moved from one computing 	

resource to another

These dynamics together make it extremely

challenging to support scaled out and highly

dynamic applications and to ensure a

consistent user experience.

The Challenges Created by
Digital Transformation

•	 Agile Development breaks development into

smaller chunks (sprints) allowing for continuous

incremental progress in software development.

•	 DevOps makes supporting software in 	

production more effective and efficient

•	 CI/CD automates much of the process of 	

delivering software into production

•	 New languages like Python, PHP, Node-JS, and

Go were invented to speed the development

of the classes of applications for which these

languages are appropriate

•	 New runtimes like Spring Boot, OpenShift and

Pivotal take progressively more of the burden of

building and running infrastructure software off

of the shoulders of the developers

•	 Docker allows applications to be isolated in

containers along with their supporting libraries

which smooths the process of testing and 	

integrating new releases into production

https://stackstate.com/

© StackState | www.stackstate.com 5

All of this software must be reliable and provide excellent

end-user experiences or else the enterprise suffers the following

adverse consequences:

•	 Reductions in online revenue – 63% of consumers say they

often abandon a brand when the online experience is poor

•	 Impacts to online company reputation – 72% of consumers

say they are loyal – until they have a bad experience

•	 Impacts to customer experience – 54% of U.S. consumers

say customer experience at most companies needs 	

improvement

Furthermore, internally time is wasted addressing issues instead

of enhancing online functionality and business performance.

Each month, companies experience 5 or more outages, lasting

an average of 200 minutes and involve 25 or more employees

to resolve. Therefore the time and people cost of responding to

incidents is far higher than it should be.

The Consequences of
Poor Digital Experience

https://stackstate.com/

© StackState | www.stackstate.com 7

In order to combat the negative impacts of poor

digital experiences, modern enterprises have turned

to monitoring tools to help identify and prevent

performance and reliability issues. In other words,

if you want it to work, you have to monitor it. You

have to monitor each layer or component in your

stack to ensure the following:

•	 That it is working (up and available to do work)

•	 That it is performing the work required in the

required interval of time (latency or 	

response time)

•	 That it is performing the amount of work 	

required per interval of time (throughput)

•	 That it is not experiencing errors while 	

performing the required work

•	 That it is not experiencing contention for 	

resources (CPU, memory, network I/O and 	

storage I/O) with other software running in 	

the environment

•	 That the amount of resources available are

sufficient to meet the needs of the component

(capacity)

There are two basic approaches to

monitoring business critical applications and

services in production. The first is to monitor

the infrastructure for the applications. In the

world before virtualization and the cloud,

this means monitoring the physical severs,

network devices, and storage devices that

comprised the IT environment. In the modern

virtualized and cloud world, infrastructure

means all of the software running in the

virtualization or cloud environment (the

operating systems, application frameworks,

databases, containers and orchestration s

ystems) that supports the applications.

The second approach is to monitor the

operation of the applications themselves.

This typically involves injecting an agent into

the application or the run time of the

application and then measuring the

performance, throughput and error rate of

the actual transactions executed by the users

of the application. APM (Application

Performance Management) tools are widely

used to monitor applications in production, as

are a variety of open source alternatives to

commercial APM tools like OpenTelemetry

and Prometheus.

The Current State of Monitoring
and Incident Management

Each of these tools feeds its alerts and

incidents into some form of an event

management, incident management, or

alert notification system.

This existing monitoring and incident

management process leads to the

following issues for enterprises:

•	 Every enterprise owns multiple 	

monitoring tools each monitoring a 	

layer or a silo in the environment

•	 The only integration of these monitoring

tools is typically that their incidents or

alarms are forwarded to a centralized

incident management system or incident

response system

•	 Incidents do not contain the information

needed to tie incidents to each other, 	

requiring extensive drill down into various

tools often occurring in physical or virtual

war room meetings.

•	 The number of incidents and the time it

takes to solve them is therefore generally

unacceptable to the business.

•	 Therefore the cost in people time and the

cost in terms of business impact of inci-

dents are both unacceptable to owners

of critical online business services.

https://stackstate.com/

© StackState | www.stackstate.com 9

The traditional focus of Observability is on metrics, logs, and traces.

Countless vendors who support some combination of metrics, logs, and

traces all now claim to be Observability vendors. However, most of these

vendors supported metrics, logs, and traces before the term

Observability became fashionable, so for these vendors Observability is

just a new way of talking about existing capabilities.

Dynamic Cloud Observability breaks new ground by adding the following

unique capabilities to an Observability platform or solution:

•	 Real-Time Build (Update) Tracking – Tracking of each new update in

production, and its resulting changes in platform configuration and

relationships.

•	 Real-Time Configuration State Tracking – Tracking of the

configuration of the application and its entire supporting virtualization

and cloud infrastructure in real-time over time.

•	 Real-Time Relationship (topology) Change Tracking – Tracking of

the dependencies between transactions, microservices, applications,

containers, Kubernetes Pods, Kubernetes Nodes, virtualization and

cloud platforms, and all of the resources (compute, memory,

networking, and storage) that support each application in real-time

over time. This means knowing exactly what these relationships are

and how they changed before, during and after each incident.

•	 Root cause based upon AI AND Related Changes. Dynamic Cloud

Observability means that the AI knows with certainty that a set of

objects are related to each other and that they all support and affect

the transaction of interest. This avoids the false alarms (false

positives) that result from the AI confusing correlation with causation.

•	 Incident Prevention – Dynamic Observability uses early detection of

anomalies to allow for incidents to be entirely prevented and avoided.

Enter Dynamic Cloud
Observability

The Value of Dynamic
Observability
Dynamic Observability automatically adds the information needed to resolve

issues into the existing incident management system. This dramatically

improves the existing incident management process without disrupting it by

replacing either the underlying monitoring tools, or the incident

management tools themselves. These improvements in the incident

management process lead to:

•	 60% reduction in the time to address incidents

•	 20% fewer staff needed to fix incidents

•	 65% decrease in the number of incidents per month

•	 And 30% reduction in the cost per incident

All of which leads to dramatic improvements in online revenue, online

reputation, and online customer experience.

The deterministic nature of the relationships and configuration changes

over time are also the necessary pre-conditions to being able to automate

problem resolution as it is essential to know what impacted what and what

changed in order to accurately take automated actions.

https://stackstate.com/

About StackState

StackState delivers Dynamic Cloud Observability. StackState integrates with

cloud platforms, Kubernetes, Prometheus and incident management systems to

add the certainty and richness of relationships, configuration changes and

AI-based diagnostics to the existing incident management process. This uniquely

leads to Deterministic Root Cause, which helps IT teams prevent and solve

problems more quickly and efficiently.

