
© StackState 2021 | www.stackstate.com © StackState 2021 | www.stackstate.com1 2

Monitoring in a
Cloud-Native Era
By Bernd Harzog, 2021

https://stackstate.com/
https://stackstate.com/

1© StackState 2021 | www.stackstate.com

Table of contents

Monitoring in the Cloud-Native Era Page - 1

Page - 2Monitoring in a Cloud-Native World

Monitoring Challenges Unique to Microservices

Page - 3Advantages of Cloud-Native Applications

Monitoring Individual Microservices Enhance Reliability

Monitoring Latency

Page - 8The Challenges of Monitoring a Cloud-Native Environment

Downsides of Multiple, Disperarate Monitoring Systems

Better Monitoring in Cloud-Native Era with
StackState RBO Platform

Taking Cloud-Native to the Next Level with
Relationship-Based Observability

Page - 10

Page - 11

Page - 11

Page - 12

Page - 13

Page - 14

The move to the cloud creates massive opportunities to deliver great applications and experiences to

customers and employees, but it also comes with a new set of complexities. These new environments,

powered by containers and microservices, among others, are dynamic and ever-changing.

The old ways of monitoring don’t apply anymore—but the need to ensure the reliability and performance

of your applications is more important than ever.

How do you rationalize this? With cloud observability solutions.

Monitoring in the Cloud-Native Era

https://stackstate.com/
https://www.stackstate.com/white-papers/a-cios-view-of-observability-the-key-to-balancing-strategic-and-operational

© StackState 2021 | www.stackstate.com 2 3

Monitoring in a Cloud-Native World

Cloud-native applications are built and run in a way that

takes advantage of cloud computing to deliver services. This

enables companies to bring ideas to their users and target

markets faster. The cloud also empowers companies to

respond to user needs faster than in a traditional

development and management model.

Typically, cloud-native applications depend on a

container-based infrastructure. With containers, the ways

in which the applications interface with their dependencies

can be tweaked and enhanced to create novel efficiencies,

more options, and new solutions.

Cloud-native applications are also structured around

microservices. With microservices, the elemental functions

of an application are executed by individual services, which

can be managed, repurposed, and automated within

containers.

Advantages of Cloud-Native

Applications

Cloud-native applications come with several advantages,

and each benefits a different aspect of your organization

and its systems, including the speed and ease with which

development happens, as well as the culture supporting the

process.

Speed

The speed at which a service is delivered used to be hin-

dered by the hardware that delivers it. With a cloud-native

approach, developers don’t have to rely on outdated or weak

hardware. You have access to the latest and greatest—and

some of the fastest—components available.

The way speed benefits an application varies depending on

the application, industry, and how it’s being used. However,

in the development phase, cloud-native application

engineering has clear benefits, regardless of the business

that’s using it. For example, with a microservices-based

architecture, you can strategically position your depen-

dencies in a variety of ways without having to manually

recode each one. In this way, you can simply tell the app

which dependencies to use, as well as where in the process

they should be utilized. If it doesn’t work, or if performance

doesn’t meet your benchmarks, you can simply try a new

configuration.

https://stackstate.com/
https://www.stackstate.com/blog/introducing-observability-for-cloud-and-containers

© StackState 2021 | www.stackstate.com 4 5

When compared to the traditional development

model, a container-based, microservices-depen-

dent architecture can help development teams get

an application just right faster and easier.

After an application has been built and

deployed, the speed you get with a cloud-

native ecosystem further benefits the end

user and development teams. If, for whatever

reason, the application isn’t meeting users’

needs, there’s no need to recode everything

from the ground up. In many cases, adjusting

how dependencies are utilized can solve

significant problems for the end user. This

saves time when it comes to improving

applications for future updates. It also makes

it possible to deploy more often, enabling the

organization to respond better to the needs

of their end users.

Back in the day, you had
to make everything by
stuffing pieces together,
one by one. Ready-to-Use Infrastructure

Remember the first time you saw a Lego set with

those cool, premade pieces? Back in the day, you

had to make everything by stuffing pieces togeth-

er, one by one. Now, you have loading buckets for

trucks, entire tractor trailers, boats—they even

have an entire Millennium Falcon. While those of us

who tirelessly pieced together bucket loaders and

laser blasters using about 837 little bricks may not

be happy, the premade stuff makes building, say, a

scene in the Kessel run a whole lot faster.

It’s the same with cloud-native, ready-to-use tools.

While hardcore development nerds may want to

custom-code every aspect of their applications,

the rest of the world—those with deadlines—would

rather piece together the basic framework using

prebuilt, proven components. These may include

application programming interfaces (APIs), caching

services, workflow engines, and operational rules.

Because these core elements are preconstructed,

you simply click them in place and then go about

developing the things that make your application

unique.

On-Demand Infrastructure

Instead of forcing your teams to build apps

using limited resources that may take consid-

erable time and investment to upgrade, with

cloud-native architecture, you can get what

you want when you want it. The cloud provid-

er has all the tools and resources you need

at the ready. Getting more processing power

or storage, for example, is only a matter of

requesting an upgrade. The resources you

need can be ready to use in minutes.

In contrast, the traditional development mod-

el requires development teams to request

just the right amount of resources prior to

starting a project. If, partway through, they

have an awesome idea that needs an addi-

tional resource, they may have to wait days

or weeks for it to arrive. With a cloud-native

architecture, it’s like you’re sitting in the mid-

dle of Home Depot with a gigantic shopping

cart, ready to build a shed. Anything you

need, you just grab it, and you’re good to go.

With the traditional model, you realize you

don’t have a heavy enough hammer, you have

to order from the Sears catalog then wait for

it to arrive.

With on-demand infrastructure, these kinds

of unnecessary delays and expenditures can

be avoided. Everything is at your fingertips.

https://stackstate.com/

DevOps Culture

DevOps culture is all about attaining agility through

thoughtful teamwork across disciplines. With a cloud-native

environment, it’s easier for various team members to

collaborate on projects regardless of where they are in the

office—or the world. Everyone can hop on the platform and

start collaborating. With a cloud-native infrastructure, you

eliminate physical silos right off the bat, which paves the

way for toppling other kinds of silos as well.

Continuous Integration and Continuous

Delivery (CI/CD)

In addition, cloud-native applications take advantage of

continuous integration and continuous delivery (CI/CD)

principles. This essentially means that DevOps teams can

develop, integrate, and improve applications on a

continuous basis through writing and deploying code

reliably and frequently.

One of the earliest, and most common, types of cloud-native

development is a perfect example of CI/CD: building a

website on a site like GoDaddy. Before this was possible,

you would have to write out your HTML painstakingly on

your desktop, then upload it to the webserver and hope it

looked how you want. If not, you had to dig back into your

code file, find the problem, fix it, upload it again, make it live,

and see how it looked. With GoDaddy, Wix, and others, you

can make a little change and have it updated to your live site

with a couple of clicks.

CI/CD in a cloud-native development platform enables this

kind of agility but with complex applications. Instead of

feeling like you’re starting from scratch every time you have

to make a change to the application, you can tweak it and

redeploy in minutes. At the same time, you can obtain

real-time feedback from the field, other developers, users,

and other stakeholders. You can collect this input, apply

another change, and see how they like it.

CI/CD also benefits the process of testing applications for

vulnerabilities. If you have a white hat hacker on your team,

for instance, you can deploy one version, see if the hacker

can crack it, then try again—and again—until you have an

airtight application.

© StackState 2021 | www.stackstate.com 8 9

The Challenges of Monitoring
a Cloud-Native Environment
These benefits are all well and good, but how do you monitor

cloud-native apps? One of the strengths of cloud-native systems

is the variety of different tools that you can combine to create

exciting solutions. But how do you make sure these are all safe?

Furthermore, if something goes wrong in the application or system

you’ve built, how do you know from where the problem originated?

The first step in solving the monitoring puzzle involves asking three

key questions:

1. Which technologies do the infra-
structure and applications use?

The technology used will dictate how it

needs to be monitored. Monitoring, after all,

is only as good as the outputs you have to

observe. Different technologies naturally

necessitate different outputs. You wouldn’t

put a meat thermometer in a fried egg. (Well,

you could, but…) So the first challenge in

monitoring a cloud-native infrastructure is

figuring out the tech you have and the

possibilities for monitoring it.

2. How do you collect comprehen-
sive data about the health and
performance of each entity?

Every entity has pieces that make it work. In

some cases, you need to monitor several of

these in order to ensure it’s working properly.

In other situations, the data from one element

may not be all that helpful.

Take a simple server, for example. You have

a motherboard, a processor, memory, hard

drives, a network connection, video cards,

and a power supply. When monitoring this

kind of server, one team may be focused

on the speed at which it delivers services

in comparison to its power consumption.

Another team may be more interested in how

much memory is used as it executes different

processes. A totally different team—not even

IT, necessarily—may be more concerned with

how hot the motherboard gets during specif-

ic processes because this can impact cooling

expenses for the data center that houses this

server and similar units.

In an ideal world, you can present all the data

you need on one screen, and different teams can

choose what they want to observe. And with a

server, this isn’t too hard. However, with a

complex IT environment, you may have to choose

which facets of a component, network, appli-

cation, or process are the most important to

observe. This process, if not executed properly,

can result in anything from time wasted tracking

down where problems originated to undiscovered

security vulnerabilities that expose your system to

threats.

3. How do you compile and analyze
data to provide actionable insights
into performance?

Harvesting data is sometimes the easy part.

Organizing it into something you can use to

improve and change how applications function

can be another thing altogether. This is partic-

ularly challenging in a cloud-native environment

where the smorgasbord of resources and

processes may have several interdependent

parts—and that the environment at this moment

can look very different than a day ago, an hour

ago, or even a minute ago.

Returning to the server example, how does the

clock speed of the processor impact memory al-

location? Does it? When? Why? If there’s a bottle-

https://stackstate.com/

© StackState 2021 | www.stackstate.com 10 11

neck, what’s causing it? The hard drive? The

network adapter card? Something else? The

list of questions can be nearly endless.

When dealing with a cloud-native system you

have to monitor, you face a similar challenge.

You have to figure out which components

and services need to be monitored and which

facets of their operation pertain most directly

to the macro service being performed. Then

you have to ascertain how to glean, organize,

and process this information.

With appropriate monitoring, you can combat

the resulting dip in reliability by monitoring

each microservice’s performance. If a prob-

lem occurs, you can pinpoint the cause in

moments. You can also use the insights you

gather to troubleshoot microservices or the

ways in which they interact.

Monitoring Latency
Each microservice comes with latency.

Latency is unavoidable, like traffic when

you’re trying to get somewhere… or taxes…

or drama with your in-laws. Latency is some-

thing you learn to live with—at least until it

behaves in a way you didn’t expect. With

microservices, the latency of each one may

be relatively predictable, but every now and

then, there can be a latency spike. Multiply

the chances of this happening within one

microservice by your total number of micro-

services, and the likelihood of troublesome

latency skyrockets.

While this may be hard to prevent, it can be

monitored, troubleshot, and mitigated with

adjustments. In this way, you can get a step

ahead of latency problems and the chain

reactions of issues that can result. You can

also use a monitoring system to reapportion

microservices or redesign the infrastructure

that manages them to create a more efficient

system.

Monitoring the Communication

Between Microservices

Microservices have to be able to locate each

other within the network, as well as how to adjust

processes as issues arise, ensure workloads are

balanced, and so on. This can be accomplished in

a few different ways, such as with a remote pro-

cedure call (RPC) framework, service meshes, or

network proxies.

Monitoring how these communications take place

may involve drawing data from the RPC framework

or other facilitation tools. You also have to know

which data you want to collect, basing your de-

cisions on the macro or microservices being per-

formed by the system.

Monitoring Individual

Microservices to Enhance

Reliability
Microservice architecture opens a lot of possibili-

ties, but it can also open a Pandora’s box of unpre-

dictable reliability issues. A monolithic infrastructure

may seem cumbersome and limiting from a devel-

opment and deployment standpoint, but at least it’s

easy to figure out what needs to be restarted in the

event of a failure: the central server. On the other

hand, if you take all the services running in a mono-

lith and designate them as individual microservices

running on separate hosts in a network, you

suddenly have many more points of failure.

Monitoring Challenges Unique

to Microservices
In a way, microservices work together like the

components of a server. They all work together to

provide a macro service. In some architectures,

they work in unison after a single input has been

submitted. In others, they may work in sequence.

With a system governed by container orchestration

tools, services can be automatically engaged based

on the demands of the system or a specific process

within it. It can get complicated really quickly. But

focusing on some of the core challenges can help

simplify the process.

Monitoring the Orchestration

Process

When running microservices in a system that has

orchestration in place using a tool like

Kubernetes, for example, resources can be sched-

uled, containers can be deployed, the system can

scale automatically according to need, and more.

Once you have a system in place to execute this

level of orchestration, you need to make sure it

can be monitored. With so many moving parts and

parts that have a brief lifetime, if something goes

wrong, it can take an inordinate amount of time to

figure out what went wrong. However, if you have a

way to monitor the orchestration process, you can

back-trace to the initial incident that spawned the

trouble.

https://stackstate.com/
https://www.stackstate.com/blog/observability-with-context-telemetry-time-tracing-and-topology

© StackState 2021 | www.stackstate.com 12 13

Downsides of Multiple,
Disparate Monitoring
Systems

Particularly when you’re monitoring in a cloud-

native environment, which may be populated by

many systems running simultaneously, using mul-

tiple monitoring tools has significant drawbacks.

Cloud-native monitoring is therefore best served

with a unified system.

Here are some reasons why.

Siloed Data

Even several well-conceived monitoring systems

may result in excess work and wasted time if they

are separate from each other. The data each

system produces will only be truly actionable if it is

correlated and compared with the outputs from the

other systems, which results in extra steps. If your

cloud-native monitoring tools are unified, then you

have a single pane of glass that results in reduced

work and enhanced productivity.

Too Many Alerts

With disparate monitoring systems, you have

to struggle with a plethora of alerts. Often,

the number of alerts can be reduced with an

end-to-end observability solution, particu-

larly if all alerts are correlated according to

severity or how imminently dangerous the

corresponding fault is.

Chaotic War Room Meetings for
Issue Diagnosis

With several disconnected monitoring

systems, chaos is bound to happen in the

troubleshooting process.

Best-case scenario: There’s a fracas of

opinions being levied in a din of confusion.

Worst-case scenario: Finger-pointing and

arguments erupt over which system or

application is to blame. But with a system

that unifies all your disconnected systems,

you can avoid the conflict and confusion.

Lack of Visibility in the

Performance of Your IT Stack

An IT stack that’s not truly observable may be

the worst consequence of disparate monitor-

ing systems. A system—if comprised of

several standalone monitoring platforms—

may not even answer some of your most

important questions:

• How are the different elements of the

IT stack performing in relation to each

other?

• At the moment of failure, did only one

system generate a fault—or was it

multiple?

• Is there a chain reaction happening where

one system impacts another? If so, how

long does it take for the issue to spread?

Root-Cause Analysis Takes Too
Much Time

While multiple monitoring systems can detect

anomalies, each one adds an extra step in

the process of root-cause analysis. With an

observability platform that consolidates

insights from different sources, you can

ascertain the root cause faster because you

have data from all systems in a

single pane of glass.

Taking Cloud-Native
Monitoring to the
Next Level with
Relationship-Based
Observability

There are many downsides to using multiple

monitoring tools, as discussed in the previous

section, but there’s a solution that can make

them all work together—a relationship-based

observability (RBO) platform. With it, you can:

• Leverage information from your existing

monitoring tools

• Break down the silos between your vari-

ous tools

• Create a unified view of the end-to-end

IT environment

The results:

• Faster root cause analysis

• Unified insights

• Noise reduction

• Business impact analysis

• IT process automation

https://stackstate.com/

Better Monitoring in the
Cloud-Native Era with
StackState’s RBO Platform

With more and more organizations going cloud-native, monitoring challenges

abound. While cloud infrastructures offer impressive benefits, this ultimately

results in more systems that need to be monitored. Trying to do this with dispa-

rate monitoring tools may only create more work for your IT or DevOps team. To

benefit from the speed, ready-to-use,

on-demand infrastructure, and CI/CD capabilities of cloud-native solutions, you

need a relationship-based observability (RBO) platform.

StackState is uniquely positioned to provide the end-to-end visibility that or-

ganizations with complex, dynamic IT structures require. With RBO, you get the

ability to relate changes directly to incidents, which allows you to troubleshoot

issues quickly. You can also speed up the development, testing, and deployment

process because you can spend less time chasing down issues and more time

testing out your solution. Also, with StackState, organizations can carry on using

the monitoring tools they already have because the platform unifies the various

data from those tools into one dashboard.

Get in touch with StackState today to learn more about how relationship-based

observability can help you control and enhance your cloud-native solutions.

https://www.stackstate.com/white-papers/breaking-new-ground-with-relationship-based-observability
https://www.stackstate.com/contact/

