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The liver is a major site for the metabolism of xenobiotic com-
pounds due to its abundant level of phase I/II metabolic enzymes.
With the cost of drug development escalating to over $400 million/
drug there is an urgent need for the development of rigorous
models of hepatic metabolism for preclinical screening of drug
clearance and hepatotoxicity. Here, we present a microenviron-
ment in which primary human and rat hepatocytes maintain a high
level of metabolic competence without a long adaptation period.
We demonstrate that co-cultures of hepatocytes and endothelial
cells in serum-free media seeded under 95% oxygen maintain
functional apical and basal polarity, high levels of cytochrome P450
activity, and gene expression profiles on par with freshly isolated
hepatocytes. These oxygenated co-cultures demonstrate a remark-
able ability to predict in vivo drug clearance rates of both rapid and
slow clearing drugs with an R2 of 0.92. Moreover, as the metabolic
function of oxygenated co-cultures stabilizes overnight, preclinical
testing can be carried out days or even weeks before other culture
methods, significantly reducing associated labor and cost. These
results are readily extendable to other culture configurations
including three-dimensional culture, bioreactor studies, as well as
microfabricated co-cultures.

drug discovery ! liver metabolism ! tissue engineering

The liver is the largest internal organ and the hub of carbo-
hydrate, lipid, and protein metabolism. Liver metabolism

plays a central role in the clearance, modification, and incidental
toxicity of most nutrients and xenobiotics. Consequently drug-
induced liver toxicity and unpredicted drug metabolism are
major causes of postmarket drug withdrawal (1, 2). With cost of
drug development escalating to $400 million/drug there is an
urgent need for the development of rigorous models of liver
metabolism in the context of ADME/Tox (absorption, distribu-
tion, metabolism, excretion, and toxicity) screening. This need is
exacerbated by the failure of animal studies to predict drug
clearance and toxicity, as well as the disastrous clinical and
financial consequences of postmarket drug withdrawal (2, 3).

One model found to be useful in the prediction of drug
metabolism is the culture of primary human hepatocytes (4, 5).
In current practice, isolated hepatocytes are cultured in suspen-
sion, a configuration shown to maintain high levels of cyto-
chrome P450 (CYP450) activity up to 6 h in vitro. This technique
allows for the characterization of rapidly clearing drugs (4, 5).
However, the inherent difficulties in evaluating the metabolism
of slow-clearing drugs under such short time periods bars many
promising compounds from clinical validation (4). An alterna-
tive approach developed by several groups, including ours, is to
support the long-term function of primary hepatocytes using
specialized tissue culture configurations (6–8).

Previously, Dunn et al. demonstrated long-term synthetic and
metabolic activity in primary hepatocytes entrapped between
two layers of collagen (9, 10), while others demonstrated similar
enhancement of function in hepatocytes following their aggre-
gation into spheroids (11). An alternative strategy is the cocul-

ture of hepatocytes with non-parenchymal cells such as 3T3-J2
fibroblasts or endothelial cells (8, 12, 13). Recently, micropat-
terns of hepatocytes and 3T3-J2 were shown to acquire high
levels of CYP450 gene transcription and metabolic activity
following 11 days of culture (14). While these culture configu-
rations offer significant metabolic competence, they do so only
after a long adaptation period of between 7 to 10 days of culture
during which the primary cells slowly adapt their metabolic
activity to the in vitro microenvironment (6, 14).

One strategy to eliminate this long adaptation period and
attain a high level of metabolic activity from the onset of culture
is to minimize the stress associated with the transition between
the in vivo to the in vitro microenvironment. A critical aspect of
the microenvironment which is dramatically different between in
vivo and in vitro is oxygen supply (15). In vivo a mixture of
arterial and venous blood continuously supply over 2,000
nmol/mL of oxygen to hepatocytes, while in vitro oxygen’s low
solubility in culture media offers less than 200 nmol/mL to the
cells (7, 16). While this has traditionally limited hepatocytes to
subconfluent cultures (15), oxygen supply becomes an even
greater concern during the initial phase of cell attachment when
oxygen uptake rates are 300% greater than normal (17, 18). It
is not surprising therefore that reducing oxygen concentration
negatively affects hepatocyte metabolism (19–21). However, it is
surprising that the culture of primary hepatocytes under high
partial pressures of oxygen is not reported to improve their
metabolic activity (19, 21, 22).

Our recent development of an oxygen-carrying matrix allowed
us to identify a negative effect of serum on oxygen-enhanced
metabolism (16). As serum has been previously shown to cause
loss of hepatocyte polarity and gene expression during the onset
of culture (23, 24), it suggests that a serum-free, oxygen-rich
microenvironment would minimize adaptation stress and allow
for high levels of metabolic activity from the onset of culture. If
this hypothesis holds, it suggests a simple approach to enhance
the metabolic activity of other highly metabolic cells such as
cardiomyocytes, "-cells, or neurons, and could potentially en-
hance our ability to induce these phenotypes during embryonic
stem cell differentiation.

In support of this hypothesis we demonstrate that serum has
a predominantly negative effect on the metabolic function of
primary rat and human hepatocytes. In the absence of serum, the
effects of an oxygen-rich seeding environment are pronounced,
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resulting in high levels of phase I/II metabolism, transporter
activity, functional polarization and gene transcription from the
onset and during long-term culture. This sustained metabolic
competence allows for a critical evaluation of drug clearance
rates, transporter activity, and drug-drug interactions for both
slow and fast clearing drugs. Metabolic activity in oxygenated
co-cultures is comparable and in many cases superior to suspen-
sion cultures, requires no adaptation period and is therefore
associated with significantly reduced labor and cost.

Results
Minimal Gene Expression and Function During the Onset of Hepato-
cyte Culture. Fig. 1 A and B show albumin and urea production
rates in primary rat hepatocytes co-cultured with 3T3-J2 fibro-
blasts or endothelial cells, compared to those cultured alone.
Standard serum-containing hepatocyte culture medium was
used for all culture conditions (9, 14). As was previously shown,
a 3-day lag period occurs at the onset of culture during which
albumin production is minimal. Supported by non-parenchymal
cells, albumin synthesis slowly increases over time to stabilize
around 46 !g/106cells/24 h by day 11. At the same time,
hepatocytes cultured alone rapidly lose albumin and urea pro-
duction. Quantitative gene expression analysis reveals that de-
spite functional recovery in coculture, both culture configura-
tions have markedly lower mRNA levels than freshly isolated
cells at the onset of culture (Fig. 1C). We show that the
expression of phase I and phase II enzymes as well as drug
transporter proteins on day 3 of culture is significantly lower than
in vivo for all culture configurations. As expected, Cyp1A activity
measured by the EROD assay for co-cultures and monocultures
was respectively 70 ! 20% and 50 ! 20% lower than hepatocytes
in suspension (Fig. 1D).

Serum Has a Detrimental Effect on Short-Term Hepatocyte Function.
Primary cells are thought to require significant adaptation to
serum (23). To evaluate the effect of serum on the function of
primary hepatocytes, primary rat hepatocytes were seeded at a
density of 100,000 cells/cm2 on collagen-coated plates in serum-
free medium supplemented with increasing concentrations of
heat-inactivated FBS. Fig. 2A shows albumin production during
the first 24 h of culture, while Fig. 2B shows Cyp1A activity
following 24 h of culture. Both albumin secretion and Cyp1A
activity significantly increased with serum up to 1% concentra-
tion by 52 ! 8% (P " 0.001, n " 3) and 30 ! 10% (P " 0.021,
n " 3), respectively. However, higher concentration of serum led
to a significant decrease in albumin secretion and Cyp1A activity
by 45 ! 4% (P " 0.017, n " 3) and 43 ! 1% (P " 0.001, n "
3), respectively. As cellular attachment is thought to be mediated
by serum, we quantified cell attachment by measuring total
protein as a surrogate measure of cell number which is linearly
correlated with DNA content and cell counting in primary
hepatocyte cultures (Fig. S1). Fig. 2C shows that cell adhesion
increased in the presence of serum up to 1% concentration
corresponding to the increased function. To compensate for this
loss in cell adhesion, we supplemented the serum-free media
with H!REL defined attachment supplement. Fig. 2C shows
that in the presence of the attachment supplement, serum had
little effect on cellular adhesion. More importantly, under these
conditions Cyp1A activity increased by 74 ! 4% (P " 0.020, n "
3), Fig. 2B. Normalizing albumin production and Cyp1A activity
to adherent cell number demonstrates that serum has a predom-
inately negative effect on hepatocyte function during the first
24 h of culture (Fig. 2D).

Oxygenated Co-Cultures Support High Levels of Cyp1A1/2 and
Cyp2B1/2 Activity. Oxygen is an important component of the
hepatic microenvironment (15). While passive diffusion of ox-
ygen is not thought to be limiting during normal culture (15), it
fails to supply the oxygen requirements of primary rat and pig
hepatocytes during the first 24 h of culture when oxygen

Fig. 1. Functional characterization of primary rat hepatocyte co-cultures
with 3T3-J2 fibroblasts or endothelial cells. (A) Rates of albumin synthesis and
(B) urea production over two weeks in culture and coculture. (C) Quantitative
comparison of the transcription of phase I/II enzymes as well as influx and
efflux transporters in hepatocytes cultured alone and those co-cultured with
endothelial cells or 3T3-J2 fibroblasts (day 3) normalized to purified hepatic
mRNA. UGT, UDP glycosyltransferase; NNMT, nicotinamide N-methyltrans-
ferase; NTCP, sodium-dependent bile acid transporter; OATP, organic anion
transporting polypeptide; OCT, organic cation transporter; BSEP, bile salt
export pump; CK18, cytokeratin 18. (D) Cyp1A1/2 activity in co-cultures of
hepatocytes with endothelial cells or 3T3-J2 fibroblasts or those cultured
alone (day 1) compared to freshly isolated hepatocytes in suspension (day 0).
For additional details see SI Materials and Methods.

Fig. 2. Serum has a predominantly negative effect on the function of
primary rat hepatocytes. (A) Rates of albumin synthesis and (B) Cyp1A1/2
activity following overnight seeding in serum-free media containing increas-
ing concentrations of HI-FBS. (C) Total protein analysis demonstrates increased
cell attachment with serum up to 1% concentration. In the presence of
defined attachment supplement (with supplement) cellular attachment is
decoupled from serum. (D) Cyp1A1/2 activity normalized to number of ad-
hered cells, hepatocyte metabolic function is seen to be inversely correlated
with serum content in the seeding media.
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demands are three to four times higher than their basal levels
(17, 18). Therefore, seeding primary hepatocytes under a partial
pressure of 95% oxygen can potentially reduce the stress asso-
ciated with the transition from in vivo to in vitro culture,
supporting superior survival and metabolic function. Table 1
shows Cyp1A activity in monocultures and co-cultures of pri-
mary rat hepatocytes seeded overnight in 21% or 95% oxygen,
corresponding to 7 or 32 mg/L oxygen at the air-liquid interface
respectively. Both cultures were stabilized to atmospheric levels
of oxygen for 30 min prior to the EROD assay to ensure basal
levels of activity. Cyp1A activity was markedly elevated following
culture in 95% oxygen. Monocultures activity was increased by
64%!8% while activity in co-cultures increased by 138 ! 6%.
Interestingly, this increase in function could not be detected
when the cells were cultured in the presence of 10% serum.
Similar results were observed in monocultures and co-cultures of
human hepatocytes (Table S1). Hepatocyte viability in co-
cultures at 24 h was also significantly increased from 84 ! 4% at
normal oxygen tension to 96 ! 2% at high oxygen tension (P "
0.005 n " 3) (Fig. S2). To further characterize the metabolic
competence of co-cultures seeded in 95% oxygen, we quantified
the activities of CYP1A1/2 and CYP2B1/2 enzymes in both rat
and human cells. Fig. 3A compares Cyp1A1/2 and Cyp2B1/2
activity in primary rat hepatocytes co-cultured with endothelial

cells in 95% oxygen for 24 h (day 1) to the activity of rat
hepatocytes from the same isolation in suspension (day 0).
Similar results are reproduced in Fig. S3 for cryopreserved
human hepatocytes. Our data demonstrates that both human
and rat oxygenated co-cultures support high levels of CYP450
activity, comparable to that of hepatocytes from the same
isolation cultured in suspension.

Long-Term Maintenance of Hepatic Metabolic Competence in Oxy-
genated Co-Cultures. To further characterize the potential of
oxygenated co-cultures we quantified albumin synthesis, urea
production, and Cyp1A activity over 7 days in culture. Co-
cultures of hepatocytes with endothelial cells were seeded in
serum-free culture media under normal oxygen tension (co-
cultures) or 95% oxygen [co-cultures (oxygen)]. As a second
control representing widely used culture configuration we co-
cultured hepatocytes with endothelial cells in serum-containing
culture medium [co-cultures (serum)]. Fig. 3C demonstrates that
albumin secretion during the first day of culture in 95% oxygen
was 3-fold higher compared to serum-cultured cells (P " 0.016,
n " 3), and 2-fold higher compared to serum-free cultured cells
(P " 0.049, n " 3). No significant differences were detected by
day 7. Interestingly, while urea production (Fig. 3D) was not
statistically different at the onset of culture, it increased by day
7 in co-cultures seeded in 95% oxygen to be 4-fold higher than
serum-cultured cells (P " 0.001, n " 3), but was not statistically
different from the serum-free condition (P " 0.057, n " 3). To
compare long-term Cyp1A activity to current model systems, we
carried out two suspension measurements, one with freshly
isolated hepatocytes and another with isolated hepatocytes
following 2 h of incubation at 37 °C to account for the rapid loss
of function in suspension. As shown above Fig. 3B demonstrates
that Cyp1A activity in co-cultures seeded under high oxygen
tension was comparable to that of hepatocytes in suspension.
During the first day of culture, the activity was 59% higher than
that of serum-cultured cells (P " 0.001, n " 3), and 70% higher
than serum-free cultured cells (P " 0.001, n " 3). However, at
day 7 of culture, there was no significant difference between the
co-cultures suggesting similar levels of metabolic competence.
Long-term metabolic and synthetic activity was further sup-
ported by microscopy. Fig. 4B demonstrates that oxygenated
co-cultures of primary human hepatocytes retain their distinct
polygonal morphology through day 9 of culture.

Gene Expression and Functional Polarization in Oxygenated Co-Cultures.
To expand the characterization of oxygenated co-cultures we
carried out gene expression analysis of phase I/II enzymes as well
as drug transporters in both rat and human hepatocytes. As gene
transcription of human hepatocytes is more clinically relevant it
is presented in Fig. 4A, while rat data are shown in Fig. S4. Gene
transcription of human hepatocytes following 24 h of culture was
compared to mRNA isolated from the cryopreseved hepatocytes
stock. Fig. 4A demonstrates that oxygenated co-cultures main-
tain a remarkable level of gene transcription following the first
day of culture, comparable to in vivo levels of transcription. This
result stands in contrast to the gene transcription levels of
hepatocytes in serum-containing co-cultures which show dra-
matically lower levels of gene expression. To evaluate the
functional activity of drug transporters in co-cultures seeded in
95% oxygen we stained human hepatocyte in oxygenated co-
cultures with CDFDA, a compound which is metabolized into a
fluorescent marker, and transported by polarized cells via MRP2
into bile canaliculi (25). Fig. 4C demonstrates that human
hepatocytes seeded in 95% oxygen form functional bile canal-
iculi at the onset of culture. Another aspect of hepatocyte
polarity is the presence of 3-O-sulfated heparan sulfate (HS4C3)
on the basal surfaces of the cells (26). Heparan sulfate plays a
critical role in the clearance of lipoproteins which are thought to

Table 1. Cyp1A activity in rat hepatocytes after 24 h of culture
(nanomolar per minute per 106 cells)

Hepatocytes Hepatocyte - Endothelial

Serum free 10% Serum Serum free 10% Serum

Normal oxygen 1.48 ! 0.12 0.70 ! 0.50 1.45 ! 0.35 1.20 ! 0.60
High oxygen 2.44 ! 0.20 0.89 ! 0.30 3.45 ! 0.21 1.29 ! 0.13

Fig. 3. Long-term function of serum-free oxygenated rat hepatocyte-
endothelial co-cultures. (A) Activity of Cyp1A1/2 and Cyp2B1/2 in oxygenated
co-cultures on the first day of culture (day 1) compared to hepatocytes from
the same isolation cultured in suspension (day 0). (B) Long-term maintenance
of Cyp1A1/2 activity in all three co-cultures compared to that of freshly
isolated hepatocytes in suspension (Suspension). To account for the rapid loss
of function in suspension, a second measurement was carried out on freshly
isolated cells following 2 h of culture at 37 °C. (C) Rates of albumin synthesis
and (D) urea production in serum-free hepatocyte-endothelial co-cultures
seeded under normal oxygen tension (Cocultures) or 95% oxygen [Cocultures
(Oxygen)]. Rates are compared to hepatocytes-endothelial co-cultures main-
tained in serum-containing culture medium [Cocultures (Serum)]. Synthetic
activity in oxygenated co-cultures is maintained from the onset of culture.
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be involved the transport and metabolism of several hydrophobic
drugs (27, 28). Fig. 4D demonstrates basal surface staining for
HS4C3 in co-cultures of primary rat hepatocytes (26). Finally,
the small leucine-rich proteoglycan, decorin, which was previ-
ously shown to be important in the long-term maintenance of
hepatocyte function can be also detected in oxygenated co-
cultures (29). For additional images see Fig. S5.

Prediction of Drug Clearance Rates in Oxygenated Co-Cultures. The
ability of a given culture system to predict in vivo drug metab-
olism is dependent on the activity of drug transporters, presence
of appropriate phase I and II metabolic enzymes, and the efflux
of metabolites. As such, time-dependant drug clearance provides
a critical evaluation of the metabolic competence of the cells.
Table S2 shows a list of drugs that were evaluated using our
system. These include both fast and slow clearing drugs such as
buspirone (CYP2D6, 3A4), timolol (CYP2D6), and carbamaz-
epine (CYP3A4). Fig. 5 A and B show the in vitro clearance
profiles of buspirone, metoprolol, timolol, sildenafil, antipyrine,
and carbamazepine by co-cultures of primary rat hepatocytes
seeded under high oxygen tension. All cultures were equilibrated
in atmospheric oxygen for 30 min before drug addition to exclude
enhanced metabolism driven by the participation of oxygen in
the monooxygenation reaction. In vitro clearance of the same
compounds by oxygenated co-cultures of cryopreserved human
hepatocytes is shown in Fig. S6. Fig. 5 A and B demonstrate
strong clearance of all test compounds. Comparing in vitro rates
of drug clearance in oxygenated co-cultures of cryopreserved
human hepatocytes to in vivo rates of hepatic clearance (30)
shows a linear relationship with an R2 of 0.92 (Fig. 5E) equivalent
to the predictive ability of hepatocytes in suspension (Fig. 5F)
with an R2 of 0.91. We note some advantage in the detection of
the clearance of slow-clearing drugs (Table S3)

Evaluating the Role of Transporters and Drug-Drug Interactions. Drug
transporters, such as oatp2 and mdr1 (P-gp), play an important
role in xenobiotic clearance as a necessary step before phase I
metabolism (31, 32). Both drug transport and metabolism are
known to be affected by the activities of co-administered drugs
or dietary supplements with potentially disastrous consequences
(32, 33). To demonstrate that oxygenated co-cultures can detect
these drug-drug interactions we quantified the clearance of
midazolam and digoxin in the presence of 100 !M of the oatp2
inhibitor rifampicin (31) or in the presence of 200 !M of the
grapefruit f lavonoid naringenin, a CYP3A4 and P-gp inhibitor

(34–36). Fig. 5C shows the clearance of midazolam, a CYP3A4
substrate (37). The time course clearance of midazolam and the
formation of its CYP3A4 metabolite 1#-OH-midazolam is dem-
onstrated in oxygenated co-cultures of cryopreserved human
cells (Fig. S6). Here we show that the clearance of midazolam is
strongly inhibited by the naringenin but is unaffected by rifam-
picin as drug uptake is not mediated by oatp2. On the other hand,
Fig. 5D shows the clearance of digoxin, a rat CYPA4 substrate
dependent on oatp2-mediated uptake (31). Digoxin clearance is
strongly inhibited by both naringenin and rifampicin.

Discussion
The liver is a major site for the metabolism of both endogenous
and exogenous compounds due to its abundant levels of phase
I/II enzymes (38). For this reason, major efforts are focused on
evaluating drug clearance and other pharmacokinetic parame-
ters of new chemical entities (2, 3). Currently, drug discovery and
preclinical development programs are plagued by unreliable
models and escalating costs. One retrospective study of 68
randomly selected investigational drugs estimated that a 12%
improvement in preclinical screens or a 50% reduction in
screening time could reduce total cost of drug development by
over $200 million per drug (39, 40). The development of such
rapid and predictive preclinical screens requires the engineering
of new systems in which primary hepatocyte maintain a high level
of metabolic competence with a minimal adaptation period.

One such system is described in this work, where we demon-
strate that the combination of a serum-free culture environment
with cell seeding at 95% oxygen supports a remarkable level of
liver specific synthetic and metabolic activity, gene expression,
and functional polarization in both rat and human hepatocytes.
Oxygenated co-cultures supported gene expression profiles on
par with in vivo levels of hepatic mRNA, and cytochrome P450
activity levels (1A1/2, 2B1/2, 3A4, and 2D6) equivalent or
superior to freshly isolated hepatocytes. We have also demon-
strated the activity of the basal/sinusoidal influx transporter
oatp2, and the apical eff lux transporter MRP2. These co-
cultures seeded under high oxygen tension showed a similar
ability to predict in vivo hepatic clearance of both rapid and slow
clearing drugs with an R2 of 0.92 compared to 0.91 for hepato-
cytes in suspension, although we note that the actual value of
such in vitro vs. in vivo comparison is uncertain. Moreover, as
function in oxygenated co-cultures does not require 7 to 10 days
to stabilize (6, 14), this culture technique significantly reduces
overall labor and cost. During this work we identified no clear

Fig. 4. Relative gene transcription and functional polar-
ization in cultures of primary hepatocytes. (A) Quantitative
comparison of the transcription of phase I/II enzymes as
well as influx and efflux transporter in serum-free human
hepatocyte-endothelial co-cultures seeded in 95% oxygen
[Cocultures (Oxygen)] and those seeded in serum-contain-
ingmedium[Cocultures (Serum)] following1dayofculture
compared to purified hepatic mRNA. MDR1/P-gp, multi-
drug resistance protein 1; MRP3, multidrug resistance pro-
tein3. (B)Phasemicrographofprimaryhumanhepatocytes
in oxygenated co-cultures following 9 days of culture. (C)
Phase 3 transporter activity in oxygenated co-cultures of
cryopreserved human hepatocytes (day 3). CDFDA is inter-
nalized by hepatocytes, cleaved by intracellular esterases
and excreted into bile canaliculi as fluorescent CDF by
active MRP2. (D) Immunofluorescence micrograph of 3-O-
sulfated heparan sulfate (HS4C3) a liver specific proteogly-
can found on the basal surface of rat hepatocytes in oxy-
genated co-cultures. Liver-specific heparan sulfate plays a
critical role in the clearance of lipoproteins. (E) Immuno-
fluorescence micrograph of the small leucine-rich proteo-
glycan, decorin, previously shown to be important in he-
patocyte function. For additional images see Fig. S5.

.
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advantage of using endothelial cells over mouse 3T3-J2 fibro-
blasts, other than endothelial cells being species-specific. There-
fore our results are readily extendable to other culture config-
urations including microfabricated co-cultures (14).

A significant element of our system is the serum-free media
formulation. Such hormonally defined medium was originally
reported to support gene transcription and gap junction com-
munication in primary rat hepatocytes (23, 24). However, these
serum-free cultures are traditionally carried out following cell
seeding in serum-containing media. Here we demonstrate that
the effects of serum are detrimental for hepatocyte function,
even during a short overnight cell seeding. We suggest that
positive effects of serum are mainly due to its ability to enhance
cellular attachment, even on collagen-coated dishes. Enhancing
cellular attachment in the absence of serum results in a signif-
icant increase in function and opens the door for oxygen-
mediated enhancement.

While the transition to serum-free media demonstrated an
increase in function, it is the transition to 95% oxygen that
allowed the full metabolic potential of co-cultures to be realized.
In vivo a mixture of venous and arterial blood supplies oxygen

to hepatocytes at a rate of 1.2 nmol/s/106 cells (7). Fittingly, our
prior work demonstrated that oxygen consumption of primary
hepatocyte is 0.9 nmol/s/106 cells during the first 24 h of culture
(17). However, as the cells adapt to their new microenvironment,
oxygen uptake rates drop to 0.4 nmol/s/106 cells during long-term
culture (17, 18). Not surprisingly, 0.4 nmol/s/106 cells is also the
upper limit of oxygen diffusion under atmospheric oxygen, but
significantly less than hepatocyte demand during seeding (16).
Metabolic f lux models also suggest that hepatocytes in culture
attempt to maximize their oxygen uptake (41). This suggests the
oxygen supply is a limiting factor in the metabolic activity of
hepatocytes. Therefore, increasing oxygen tension to 95%, which
allows for oxygen supply in excess of 1.2 nmol/s/106 cells to occur
by passive diffusion, can reduce adaptation stress and allow for
higher levels of metabolic activity.

Under these conditions, CYP1A activity, albumin secretion,
and hepatocyte viability were, respectively, 70 ! 7%, 90 ! 18%,
and 13 ! 5% higher in co-cultures seeded at 95% oxygen
compared to co-cultures seeded at 21% oxygen. Drug clearance
rates and gene transcription levels were similarly enhanced.
These results stand in contrast to previous work which failed to
find a significant enhancement of hepatocyte function at oxygen
tensions greater than atmospheric (19, 21, 22). Our work clearly
shows this is due to the effects of serum and in its presence the
enhancement of function is minimal (Table 1 and Table S1). We
note that oxygen supply is dependent on its rate of consumption
and hence the global density of hepatocytes in culture. Reducing
hepatocyte density to the point where oxygen is no longer
limiting can have a similar effect to increasing oxygen tension.
The Cho et al. demonstration of elevated oxygen uptake rates
and enhanced synthetic function in low density cultures of rat
hepatocytes supports this assertion (42). However, homotypic
interactions are important in the maintenance of hepatocyte
function, requiring the maintenance of high local cell density
while global cell density is decreased. Micropatterned hepato-
cyte co-cultures, recently shown to support high levels of met-
abolic activity correspond to such a configuration. It may be
interesting to test whether the elevated long-term activity in
micropatterned cultures is due to increased oxygen availability.

The ability to quantify rates of hepatic clearance in a rapid and
cost efficient manner represents a major advancement to the
current state-of-the-art. Our work demonstrated that hepato-
cytes co-cultured under 95% oxygen demonstrate high levels of
metabolic activity. In addition, long-term function allows the
critical evaluation of slow clearing drugs as well as drug-drug
interactions without the requirement for a long, work-intensive
adaptation period. The functional polarization of the cells,
demonstrated by active transporters, and proteoglycan expres-
sion, suggests this culture model can be particularly useful in the
study of complex transporter dependent drug metabolism and
perhaps even viral infection.

Materials and Methods
Hepatocyte Isolation and Culture. Primary rat hepatocytes were harvested
from adult female Lewis rats purchased from Charles River Laboratories,
weighing 150–200 g by a two-step in situ collagenase perfusion technique,
modified by Dunn et al. 1991 (43). Hepatocyte viability after harvest was
greater than 90% and purity was greater than 95%. All animals were treated
in accordance with National Research Council guidelines and approved by the
Subcommittee on Research Animal Care at the Massachusetts General Hospi-
tal. Primary human hepatocytes were obtained from BD Biosciences or were
kindly provided by Dr. Stephen C. Strom, University of Pittsburgh. Cryopre-
served human hepatocytes were purchased from either BD Biosciences or
Celsis. Human cells were purified in 33% Percoll solution centrifuged at 500 $
g for 5 min before seeding. Cell viability post purification was greater than
90% and purity greater than 95%. Following purification hepatocytes were
suspended in ice cold culture medium at 1 $ 106 cells/mL and seeded on
collagen-coated 6-, 12-, or 96-well plates as described. Unless otherwise noted
seeding densities were 150,000 cells/cm2. Hepatocyte cultures were main-

Fig. 5. Drug clearance and functional characterization of oxygenated co-
cultures. (A and B) time course studies of the primary rat hepatocyte metab-
olism of rapidly clearing drugs, buspirone and metoprolol, medium clearing
drugs, timolol and sildenafil, and slow clearing drugs, antipyrine and carbam-
azepine. (C) Time course of the metabolism of midazolam by oxygenated rat
co-cultures following incubation with the oatp2 inhibitor rifampicin (100 !M)
or the CYP3A4 and Pgp inhibitor naringenin (200 !M). (D) Time course of the
metabolism of digoxin by oxygenated rat co-cultures following incubation
with the oatp2 inhibitor rifampicin (100 !M) or the CYP3A4 and Pgp inhibitor
naringenin (200 !M). (E) Comparison of in vitro rates of drug clearance
measured in oxygenated co-cultures of cryopreserved human hepatocytes
(day 1) with previously reported in vivo rates of hepatic clearance. The results
are in excellent agreement with an R2 of 0.92. (F) Comparison of in vitro rates
of drug clearance measured in suspension cultures of cryopreserved human
hepatocytes (day 0) with previously reported in vivo rates of hepatic clearance.
For time course study in human cells see Fig. S6.
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tained at 37 °C, 5% CO2 humidified incubator at varying partial pressures of
oxygen as indicated in the text. Suspension cultures were carried out on freshly
isolated cells in microcentrifuge tubes at a density of 1 $ 106 cells/mL. Sus-
pensions were maintained under constant shacking at 37 °C.

Non-Parenchymal Cells. 3T3-J2 mouse embryonic fibroblasts were obtained
from Dr. Howard Green, Department of Cellular and Molecular Physiology,
Harvard Medical School, and cultured as previously described (44). Primary rat
cardiac microvascular endothelial cells (RCEC) and primary human lung mi-
crovascular endothelial cells were purchased from VEC Technologies and
Lonza Inc., respectively. Endothelial cells were cultured in microvascular En-
dothelial Growth Medium (EGM2mv) purchased from Lonza, split when 80%
confluent, and used before passage eight. Human endothelial cells were used
with human hepatocytes and rat endothelial cells were used with rat hepa-
tocytes.

Hepatocyte Culture Medium. Conventional serum-containing hepatocyte me-
dium was composed of DMEM basal medium, supplemented with 10% HI-FBS,
0.5 U/mL insulin, 20 ng/mL epidermal growth factor (EGF), 7 ng/mL glucagon,
7.5 mg/mL hydrocortisone, and 1% penicillin-streptomycin. Alternatively,
hepatocytes were cultured in a proprietary H!REL serum-free medium com-
posed of a basal medium supplemented with ascorbic acid, insulin, transferrin,
EGF, and antibiotics. This serum-free medium was further supplemented with

H!REL defined attachment supplement during the hepatocyte seeding stage
as is indicated in the text.

Generation of Oxygenated Cultures. Oxygenated cultures and co-cultures were
generated by introducing 95% oxygen and 5% CO2 gas mixture (Airgas) into
a 37 °C humidified incubator and allowing the atmosphere to equilibrate for
at least 1 h before cell seeding. At these partial pressures we estimate the
concentration of oxygen at the air-liquid interface to be approximately 7 mg/L
at 21% oxygen, and 32 mg/L at 95% oxygen. Following overnight cell seeding
under 95% oxygen the cultures were washed and allowed to equilibrate to
atmospheric oxygen for 30 min before any measurements of CYP450 activity
as oxygen actively participates in the reaction. In our hands, oxygen concen-
tration stabilizes in under 20 min.

Statistical Analysis. Results are reported as mean ! standard deviation. N
denotes the number of experimental replicates. Statistical analysis was per-
formed using a Student’s t test, with P % 0.05 considered to be significant.
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