

Intravascular Lithotripsy for Treatment of Severely Calcified Coronary Lesions: 1-Year Results from the Disrupt CAD III Study

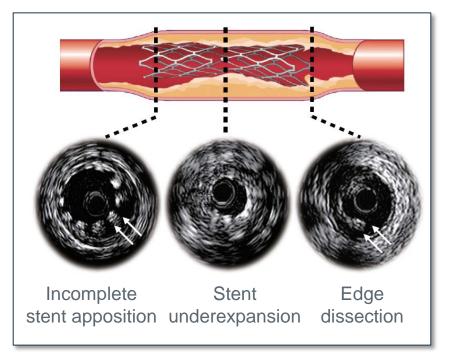
Jonathan Hill, MD

Department of Cardiology, Royal Brompton Hospital London, United Kingdom

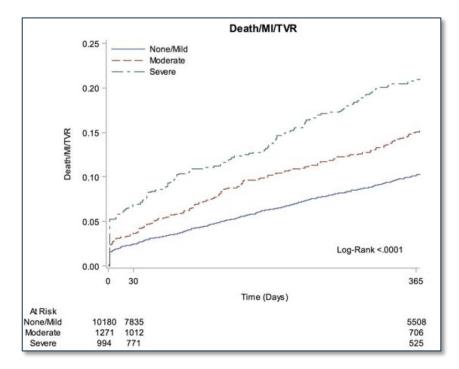
Dean Kereiakes, MD, Richard Shlofmitz, MD, Andrew Klein, MD, Robert Riley, MD, Matthew Price, MD, Howard Herrmann, MD, William Bachinsky, MD, Ron Waksman, MD, and Gregg W. Stone, MD on behalf of the Disrupt CAD III Investigators

Disclosure Statement of Financial Interest

DISRUPT


CADON

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.


Affiliation/Financial Relationship	Company
Consulting Fees	Abbott Vascular Inc
Consulting Fees	Boston Scientific Corporation
Consulting Fees	Shockwave Medical
Stock Shareholder/Equity	Shockwave Medical

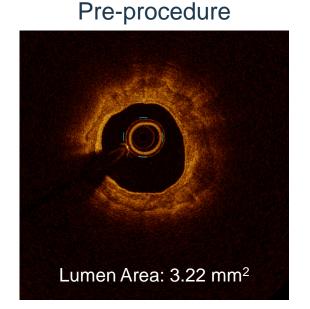
Coronary Calcification Impacts PCI Outcomes CAD III

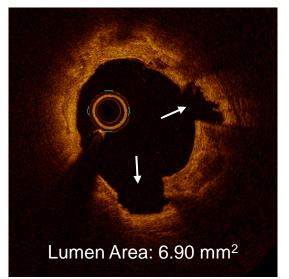
CAC may impede optimal stent deployment

Increased risk for MACE at 1-year with moderate-severe CAC

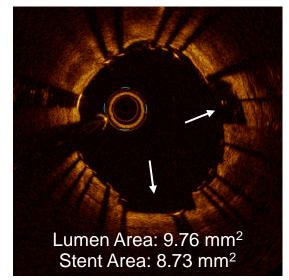
Yoon et al., KJIM 2012; Copeland-Halperin et al., Catheter Cardiovas Interv 2017

Intravascular Lithotripsy


DISRUPT


Acoustic pressure waves (1 pulse/sec) travel through tissue with an effective pressure of **~50 atm and fractures both superficial and deep calcium**

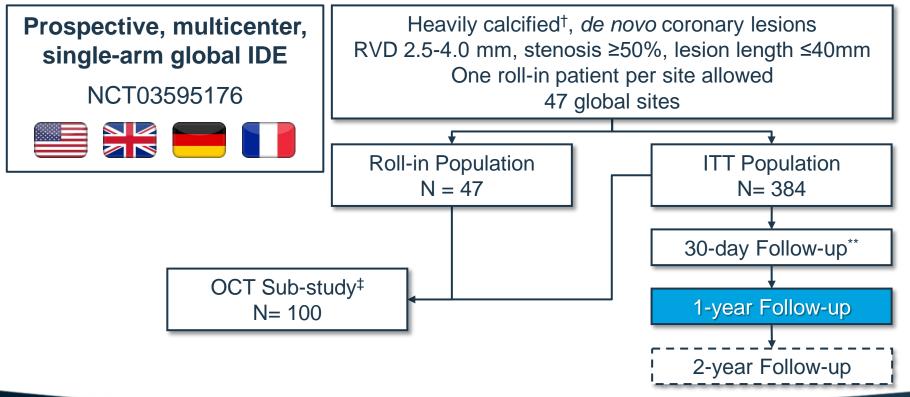
Multi-plane Calcium Fracture



Post-IVL

Post-stent

DISRUPT



Disrupt CAD III: Study Design^{*}

DISRUPT

CADOIN

^{*}Kereiakes et al., *Am Heart J* 2020;225:10-18; [‡]Shlofmitz R, TCT 2020; ^{**}Hill et al., *JACC* 2020;76:2635-46; [†]Radio-opacities both sides of vessel ≥15 mm length by angiography or calcium angle ≥270 ° by OCT or IVUS

1-Year Follow-up Analyses

• MACE

- Cardiac death, myocardial infarction^{*}, or target vessel revascularization
- Target lesion failure
 - Cardiac death, TV-MI, or ID-target lesion revascularization
- Stent thrombosis
- Sub-group analyses for MACE and TVR
- Predictors of MACE and TVR at 1-year

Key Clinical and Angiographic Eligibility Criteria

Inclusion

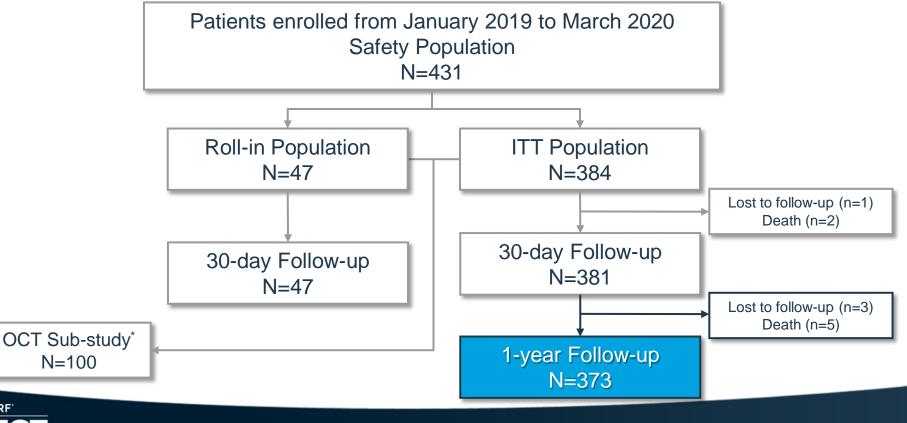
- Biomarkers (Troponin or CK-MB) normal within 12 hours prior to procedure
- LVEF >25% within 6 months of procedure
- Single *de novo* target lesion with stenosis ≥70% and <100%, or ≥50% and <70% with evidence of ischemia, or FFR ≤0.80, or lumen area ≤4.0 mm² by IVUS or OCT
- Target vessel RVD ≥2.5 mm and ≤4.0 mm
- Lesion length ≤40 mm
- Lesion site severe calcification:
 - Angiographic radio-opacities prior to contrast involving both sides of arterial wall with total calcium length ≥15 mm, or presence of ≥270° of calcium on at least one cross section by IVUS or OCT

Exclusion

- Renal failure (serum creatinine >2.5 or chronic dialysis)
- Acute MI within 30 days prior to index procedure

Disrupt CAD III Study Support

DISRUPT


Disrupt CAD III: Top Enrolling Centers

1. Richard Shlofmitz	8. Barry Bertolet
St. Francis Hospital	North Mississippi Medical Center
2. Andrew Klein	9. John Wang
Piedmont Heart Institute	MedStar Union Memorial Hospital
3. Robert Riley	10. Jean Fajadet
The Christ Hospital	Clinique Pasteur
4. Matthew Price	10. Alpesh Shah
Scripps Clinic	Houston Methodist Hospital
5. Howard Herrmann	12. Sarang Mangalmurti
University of Pennsylvania	Bryn Mawr Hospital
6. William Bachinsky	13. Robert Stoler
UPMC Pinnacle	Baylor Heart and Vascular Hospital
6. Ron Waksman	13. Janusz Lipiecki
MedStar Washington Hospital Center	Clinique des Domes

Study Flow and Follow-up

97.1% Follow-up at 1-year

CRF^{*}

Baseline Clinical & Lesion Characteristics

Characteristic	N=384	Core Lab Analysis	N=384
Age	71.2 ± 8.6		56.5%
Male	76%	LCx	12.8%
Hypertension	89%	Target vessel RCA	29.2%
Hyperlipidemia	89%	LM	1.6%
Diabetes mellitus	40%	Reference vessel diamete	er, mm 3.0 ± 0.5
Current smoker	12%	Minimum lumen diameter,	mm 1.1 ± 0.4
Prior MI	18%	Diameter stenosis	65.1 ± 10.8%
Prior CABG	9%	Lesion length, mm	26.0 ± 11.7
Prior Stroke	8%	Calcified length, mm	47.9 ± 18.8
Renal insufficiency*	26%	Severe calcification	100%

^{*}Defined as eGFR <60ml/min/1.73m²; eGFR=estimated glomerular filtration rate using the MDRD formula

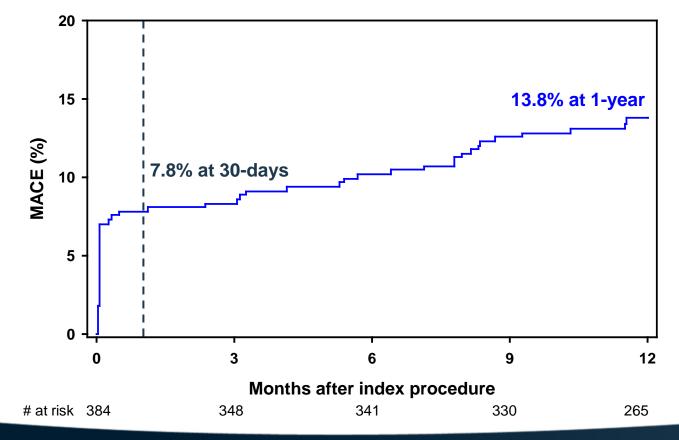
CRF^{*}

Procedural Characteristics

Characteristic	N=384
Total procedure time, min	59.0 ± 29.6
Pre-dilatation	55.2%
IVL catheters	1.2 ± 0.5
IVL pulses	68.8 ± 31.9
Max IVL inflation pressure, atm	6.0 ± 0.3
Post-IVL dilatation	20.7%
Number of stents	1.3 ± 0.5
Stent delivery	99.2%
Post-stent dilatation	99.0%

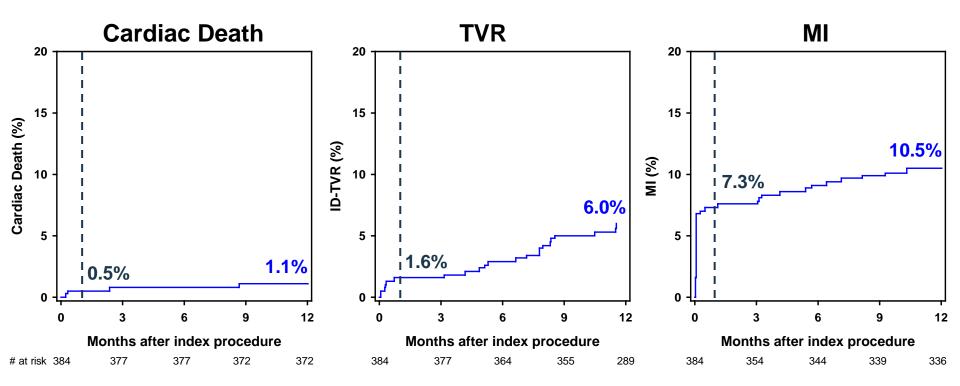
Early Study Results^{*}

DISRUPT


Primary endpoints		
Freedom from 30-day MACE	92.2%	
Procedural success	92.4%	
Angiographic outcomes		
Acute gain, mm	1.7 ± 0.5	
In-stent diameter stenosis, %	11.9 ± 7.1	
Final serious angiographic complications, %	0.5	
OCT outcomes		
Minimum stent area, mm^2 6.5 ± 2.1		
Stent expansion at max calcium site, %	101.7 ± 28.9	

Performance goals and study success were achieved *Hill et al. JACC 2020

MACE at 1-Year



Components of MACE at 1-Year

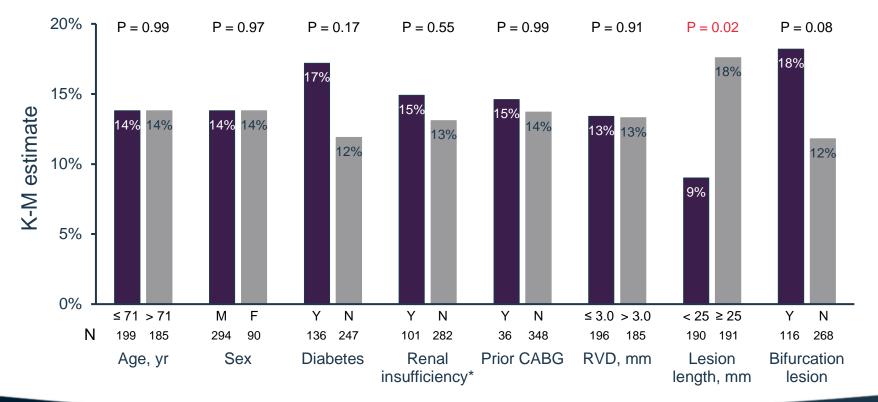
DISR! IP1

CAD

MI at 1-year driven by NQWMI (9.2%) with no Q-wave MI events beyond 30 days

CRF^{*}

Secondary 1-Year Outcomes


DISRUPT CAD III

Outcome	1-Year rate (K-M estimate)
All-cause mortality	1.8%
Cardiac death	1.1%
Non-cardiac	0.5%
Vascular	0.3%
Target lesion failure	11.9%
Cardiac death	1.1%
TV-MI	9.9%
ID-TLR	4.3%
Stent thrombosis (definite or probable)*	1.1%

*One stent thrombosis (definite or probable) event beyond 30 days

1-Year MACE by Sub-groups

DISRUPT

1-Year TVR by Sub-groups

DISRUPT

CADOIN

1-Year Outcomes: Multivariable Analysis

	OR [95% CI]	P value
MACE		
Bifurcation lesion	2.69 [1.32 – 5.47]	0.006
Prior MI	2.22 [1.01 – 4.87]	0.048
Current or former smoker	2.21 [1.01 – 4.78]	0.045
TVR		
Prior MI	4.07 [1.20 – 13.77]	0.024

Conclusions

- Disrupt CAD III at 1-year represents the largest and longest clinical follow-up of patients with severely calcified lesions treated with IVL
- Coronary IVL prior to DES implantation resulted in beneficial impact of IVL lesion calcium modification and stent expansion to at least 1 year
- MACE and TVR rates were similar in most sub-groups analyzed
 - Long lesion (>25mm) 1-year MACE driven by rates of peri-procedural NQWMI
- Further study is required to determine if IVL can effectively reduce longer-term (> 1-year) annualized incidence of adverse clinical events

