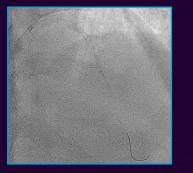
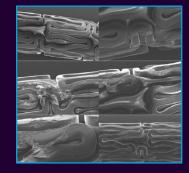
Intravascular Lithotripsy for Treatment of Severely Calcified Coronary Artery Disease: The Disrupt CAD III OCT Sub-study

Richard Shlofmitz, MD St. Francis Hospital Roslyn, New York

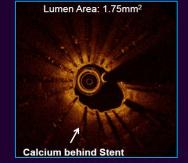
Robert F. Riley, MD, Ron Waksman, MD, Keith Oldroyd, MD, Gregg W. Stone, MD, Jonathan Hill, MD, Akiko Maehara, MD, Dean J. Kereiakes, MD



Disclosure Statement of Financial Interest


Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Consultant	
	Shockwave Medical, Inc.


Impact of Coronary Calcification on PCI

Stent Delamination

Stent

under expansion

Impairs device crossing

Insufficient balloon force

Intravascular Lithotripsy

- Expanding and collapsing vapor bubble creates a short burst of acoustic pressure waves
- Acoustic pressure waves travel through the vessel tissue with an effective pressure of ~50 atm
- A localized field effect within the vessel fractures both superficial and deep calcium

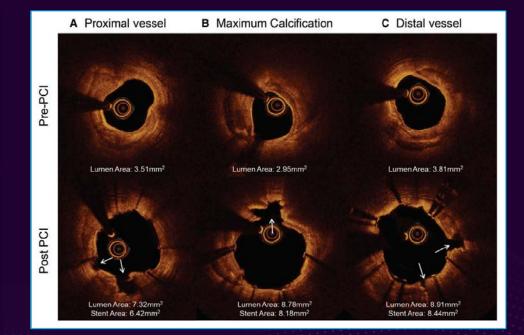
Coronary IVL Clinical Programs

	Disrupt CAD I	Disrupt CAD II	Disrupt CAD III	Disrupt CAD IV
Status	Enrollment completed	Enrollment completed	Enrollment completed	Enrollment completed
Study design	Single arm, safety & feasibility	Single arm, post-market, safety & effectiveness	Single arm, IDE, safety & effectiveness	Single arm, pre- market safety & effectiveness
# of patients	60	120	384	64
# of sites	7	15	47	8
Regions	AU, EU	EU	U.S., EU	Japan
OCT Sub-study	N=31	N=47	N=100	N=72

Disrupt CAD I and II: OCT Sub-studies

DISRUP CAD 🖸 🕅

Optical Coherence Tomography Characterization of Coronary Lithoplasty for Treatment of Calcified Lesions

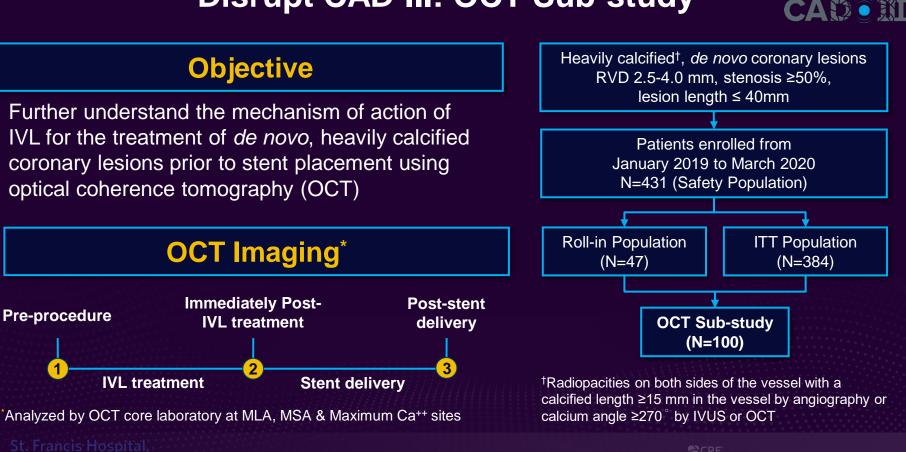

First Description

Ziad A. Ali, MD, DPhu, ^{a,b} Todd J. Brinton, MD,^c Jonathan M. Hill, MD,^d Akiko Maehara, MD,^{a,b} Mitsuaki Matsumura, BS,^{a,b} Keyvan Karimi Galougahi, MD, PhD,^a Uday Illindala, MS,^c Matthias Götberg, MD, PhD,^f Robert Whitbourn, MD,^g Nicolas Van Mieghem, MD,^h Ian T. Meredith, MBBS, PhD,ⁱ Carlo Di Mario, MD, PhD,^j Jean Fajadet, MD^k

Circulation: Cardiovascular Interventions

ORIGINAL ARTICLE

Safety and Effectiveness of Coronary Intravascular Lithotripsy for Treatment of Severely Calcified Coronary Stenoses The Disrupt CAD II Study



CAD I & II: OCT demonstrated multiple circumferential calcium fractures and excellent stent expansion

St. Francis Hospital, The Heart Center Catholic Health Services

Ali et al. JACC CV Imaging. 2017 Ali et al. Circ Cardiovasc Interv. 2019

Disrupt CAD III: OCT Sub-study

Catholic Health Services

DISRUPT

Baseline Characteristics

	OCT N=100	Non-OCT N=331	<i>P</i> Value
Age	70.1 ± 8.6	71.4 ± 8.4	0.17
Male	82%	75%	0.17
Hypertension	84%	91%	0.09
Hyperlipidemia	88%	88%	0.38
Diabetes mellitus	36%	41%	0.46
Current smoker	11%	13%	0.78
Prior MI	18%	19%	1.00
Prior CABG	3%	11%	0.03
Prior Stroke	5%	6%	0.97
Renal insufficiency	19%	29%	0.05

Angiographic Characteristics

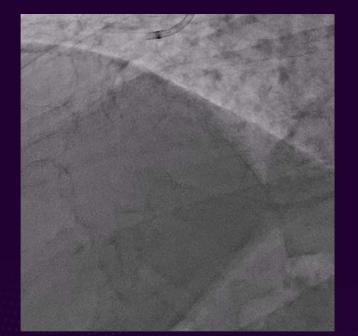
	OCT N=100	Non-OCT N=331	<i>P</i> Value
Target vessel			0.03
Protected LM	0%	2%	
LAD	67%	54%	
Circumflex	5%	16%	
RCA	28%	28%	
Reference vessel diameter, mm	3.1 ± 0.5	3.0 ± 0.5	0.02
Minimum lumen diameter, mm	1.2 ± 0.4	1.0 ± 0.4	0.001
Diameter stenosis	63 ± 11%	66 ± 11%	0.01
Calcified length, mm	51 ± 20	47 ± 18	0.20
Severe calcification	100%	100%	1.00
Side branch involvement	23%	34%	0.19

TCT CONNECT

DISRUPT

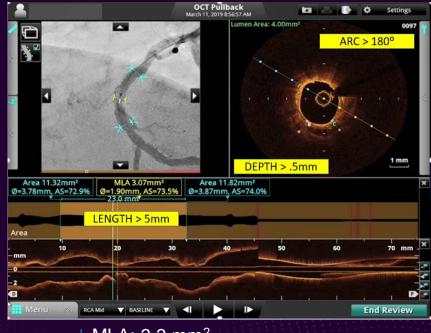
Procedural Characteristics

	OCT N=100	Non-OCT N=331	<i>P</i> Value
Total procedure time, min	58 ± 24	60 ± 30	0.61
IVL catheters	1.3 ± 0.5	1.2 ± 0.5	0.50
IVL pulses	77 ± 31	67 ± 35	0.01
Max IVL inflation pressure, atm	6.0 ± 0.4	5.8 ± 1.0	0.02
Pre-dilatation	26%	55%	<0.001
Post-IVL dilatation	20%	22%	0.78
Number of stents	1.4 ± 0.5	1.3 ± 0.5	0.15
Post-stent dilatation	99%	99%	1.00



Pre-procedure

OCT



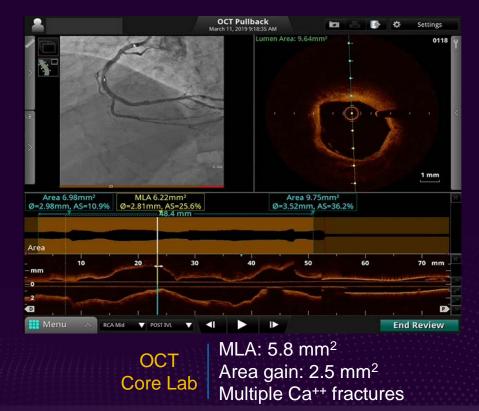
TCT CONNECT

RVD: 3.0 mm Lesion length: 12.6 mm Diameter stenosis: 50.7%

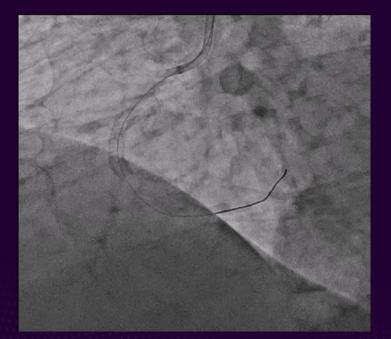
MLA: 3.3 mm² Area stenosis: 70.6% Core Lab Max Ca⁺⁺ angle: 360°, Thickness: 1.05 mm

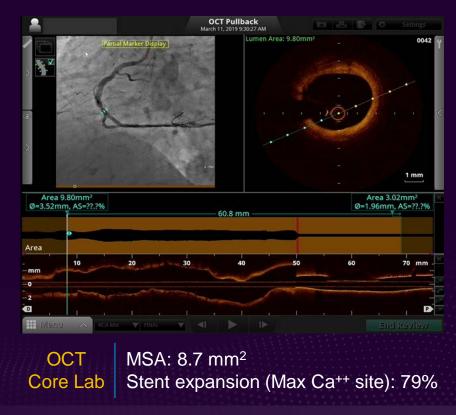
Catholic Health Services

Post-IVL



Angiographic Core Lab


Catholic Health Services

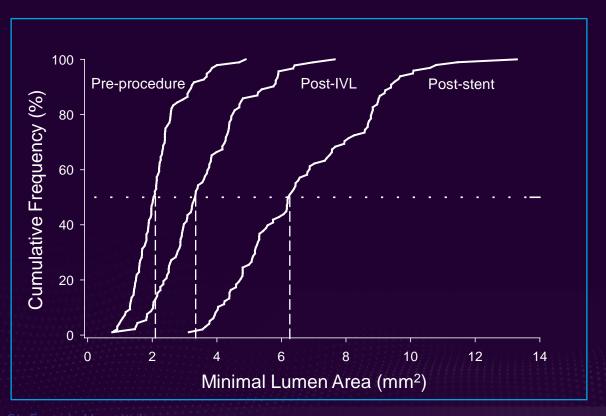

Acute gain: 1.15 mm Diameter stenosis: 17.1%

Post-stent

Angiographic Core Lab

In-stent %DS: 7.2% Acute gain: 1.18 mm

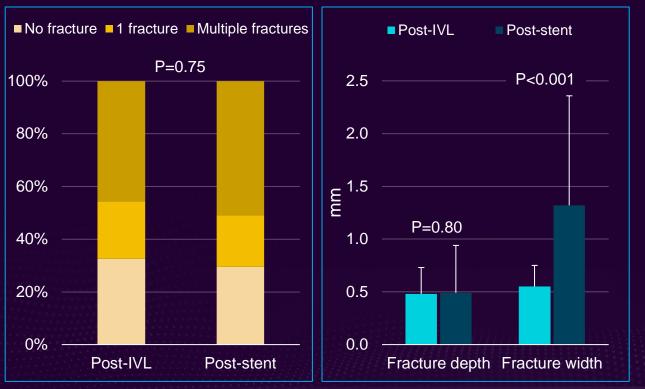
Serial OCT Measurements


	Pre-IVL _{N=97}	Post-IVL _{N=92}	Post-stent _{N=98}
At MLA site			
Minimum Lumen area, mm ²	$2.2 \pm 0.8^{*}$	$3.6 \pm 1.4^{*}$	$6.5 \pm 2.0^{*}$
Maximum Area stenosis	72 ± 12% [*]	56 ± 16% [*]	22 ± 19% [*]
At Maximum Ca++ site			
Maximum calcium angle, °	293 ± 77		
Maximum calcium thickness, mm	0.96 ± 0.25		
Stent expansion			102 ± 29%
At MSA site			
Minimum stent area, mm ²			6.5 ± 2.1
Any malapposed strut			4.1%

St. Francis Hospital, The Heart Center Catholic Health Services

*P<0.01 for all comparisons between pre-IVL, post-IVL, post-stent

Luminal Area Gain

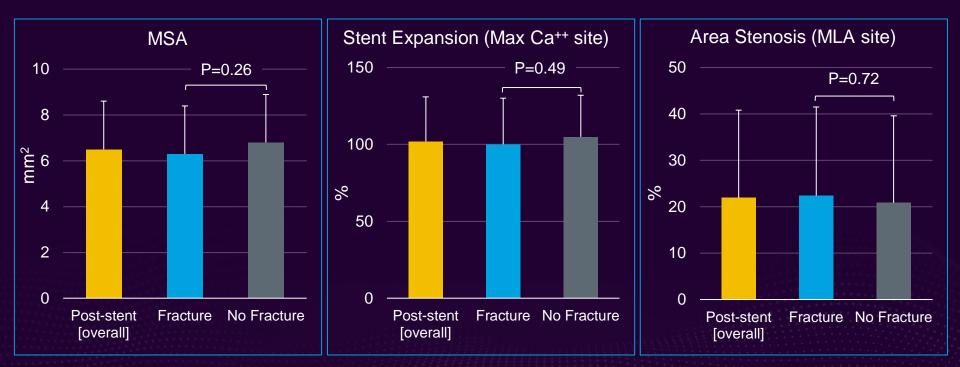


Catholic Health Services

DISRUPT CAD INI

- Positive MLA shift after IVL with low balloon inflation pressure
- Further increase in MLA after stent placement

Calcium Fracture Characteristics


Catholic Health Services

 Ca⁺⁺ fracture observed in 67% of lesions post-IVL

DISRU

- Minimum angle at fracture site was 192
- Significant increase in fracture width post-stent
- Ca⁺⁺ microfractures may occur beyond the current resolution limits of OCT

Outcomes by Fracture Visualization

Consistent outcomes regardless of fracture visualization by OCT

Performance and Safety Outcomes

Core Lab Analysis	OCT N=100		
Device crossing success	100%	End of Procedure	ОСТ
Procedural success (<50% RS)	98%		N=100
Procedural success (≤30% RS)	98%	Dissections (Type D-F)	0%
Angiographic success	100%	Perforation	0%
Final in-stent angiographic outcomes		Abrupt closure	0%
Minimum lumen diameter, mm	2.8 ± 0.4	Slow flow	0%
Residual diameter stenosis	13 ± 7	No-reflow	0%
Acute gain, mm	1.6 ± 0.4		
Diameter stenosis ≤30%	100%		

Conclusions

- OCT confirmed the safety of coronary IVL with no severe angiographic complications at the end of the procedure
- OCT demonstrated longitudinal and circumferential calcium fractures in heavily calcified lesions resulting in:
 - Increased vessel compliance
 - Large post-procedural MSA
 - Excellent stent expansion
- MSA, area stenosis, and stent expansion outcomes were excellent regardless of Ca⁺⁺ fracture visualization by OCT and may represent a limitation of OCT to detect subtle micro-fractures or out-of-plane fractures in calcified plaque

