
OPTO 22 PAC
CONTROL BASIC
ZERO-DAY DISCLOSURE

SECURITY RESEARCH

VerSprite’s Research and Development Team, VS-Labs,
discovered a vulnerability in OPTO 22’s Control Basic
Software suite that affects the Industrial Control System
(ICS) and Operational Technology (OT) industries.

To date, this software remains unpatched and is a
high-critical zero-day vulnerability that can leave ICS and
OT organizations open to attack by malicious actors.

VerSprite’s VS-Labs initially discovered the VerSprite’s VS-Labs initially discovered the
Control.basic.exe vulnerability in July of 2020. Following
proper protocol, we reached out to OPTO 22 within days of
discovering the vulnerability and gave them ample time to
produce a fix. Due to their inaction, we are releasing the
vulnerability synopsis to raise awareness around this
security issue. Please refer to our Vendor Disclosure
Timeline on page 2 to review the steps we took to uncover Timeline on page 2 to review the steps we took to uncover
the OPTO 22 PAC Control vulnerability.

VERSPRITE | VULNERABILITY ADVISORY REPORT01

EXECUTIVE SUMMARY

VERSPRITE | VULNERABILITY ADVISORY REPORT02

VENDOR DISCLOSURE TIMELINE

In the land of software development, a common hurdle
faced by developers is creating secure file parsers. File
parsers are responsible for processing an incoming
file where the file stream data must adhere to a strict
format that the software can accept. Not only is the
parser responsible for processing the file stream data parser responsible for processing the file stream data
accurately, but also securely as processing files are
subject to attacker manipulation.

This seems like a simple task. However, in practice, creating
secure file parsers is not that easy, which is demonstrated
by the hundreds (possibly thousands) of file parsing
CVE’s released every year from MITRE. File parsing CVE’s released every year from MITRE. File parsing
vulnerabilities have plagued many software development
teams for years and will continue to cause issues if file
parsers remain written in system-level languages like
C or C++, where the memory management is left up to the
developer to handle entirely.

This report demonstrates how developing in system-level This report demonstrates how developing in system-level
languages results in file parsing errors. VerSprite security
researchers perform an initial root cause analysis of a file
format parsing vulnerability they discovered within the
OPTO 22 PAC Control Basic software suite.

This report only covers the basics of file parsing This report only covers the basics of file parsing
vulnerabilities, so interested readers are encouraged to
further explore function calls within the main binary
Control.basic.exe imported from the IOCDB.dll dynamic

VERSPRITE | VULNERABILITY ADVISORY REPORT03

OPTO22 PAC CONTROL BASIC
VULNERABILITY SYNOPSIS

VerSprite VS-Labs researchers discovered a vulnerability
within OPTO 22’s PAC Control Basic software suite’s main
application, Control.basic.exe. This application’s file parser
is vulnerable due to an Out-of-Bounds Read (OOB[R])
during the parsing of a modified idb file within a projects
strategy folder. The OOB[R] occurs due to misuse of the
ATL/MFC CStringT class constructor. The CStringT class
constructor is responsible for performing string copy constructor is responsible for performing string copy
operations, and has the potential for causing memory
exceptions as detailed in the Remarks section of the official
Microsoft Documentation.

Because the constructors copy the input data into new
allocated storage, memory exceptions may result. Some
of these constructors act as conversion functions. This
allows you to substitute, for example, a LPTSTR where a
CStringT object is expected.

VERSPRITE | VULNERABILITY ADVISORY REPORT04

VULNERABILITY OVERVIEW

Through utilizing the Windows Debugger (WinDbg Preview)
from the Microsoft Store, we were able to record the Access
Violation during the parsing of the malicious idb file within
the Control.basic.exe binary. The initial Access Violation
recorded with WinDbg’s Time Travel Debugger (TTD) can be
seen in the table below.

An important note is that during testing, symbols may
cause issues that were within a VM function and
strcpy_s() is recorded. However, within a different VM the
function, strlen() is recorded.

VERSPRITE | VULNERABILITY ADVISORY REPORT05

REVIEW OF INITIAL
ACCESS VIOLATION

ROOT CAUSE ANALYSIS
The issue stems from an attacker-controlled
boundary condition associated within either a while or
for loop within the sub_6900A0 function within the
Control.basic.exe binary.

The attacker-controlled condition (stored within the
pointer at ECX+202h), is first checked against an
incremented counter (stored within var_18), before
progressing further into the loop where a pointer to
a string is passed as an argument to the function name a string is passed as an argument to the function name
case_1_atl_string_creation() (modified function name).
The case_1_atl_string_creation() function appears to be
a wrapper for the ATL::CStringT string class constructor
itself. Verification of the initial boundary check is seen
in the image below.

VERSPRITE | VULNERABILITY ADVISORY REPORT06

The counter (var_18), is utilized before the ATL::CStringT
wrapper function call during an imul instruction where the
resulting value, stored within EAX, is used as an index into
the ECX register. Which at this time holds a buffer of file
data extracted from previous CFile::[Open/Seek/Read]()
function calls within the IOCDB DLL. The ECX register is then
further indexed by a static offset of 0x206 into the file
stream. The resulting pointer is then assigned to the stream. The resulting pointer is then assigned to the EDX
register and passed to the ATL::CStringT wrapper function.

VERSPRITE | VULNERABILITY ADVISORY REPORT07

With each iteration where the counter (var_18) is less than
the attacker-controlled value at offset 0x202 within the file
buffer (ECX/arg_0), the counter is multiplied by 0x101. With
improper bounds checks on the attacker-controlled value
(ECX+202h), it is possible for an Out-of-Bounds Read
condition to present itself. The OOB[R] occurs due to data
outside of the intended file buffer being accessed (read)
during the during the ATL::CStringT string class constructor because
the [while/for] loop fails to validate that the pointer is within
the proper bounds of the actual file buffer before the
ATL:CStringT wrapper is called.

Verification of the file stream data within ECX and the
usage of the counter during the imul instruction is seen in
the image below.

Verification of the file stream data within ECX and the
usage of the counter during the imul instruction can be
seen in the image below.

VERSPRITE | VULNERABILITY ADVISORY REPORT08

VerSprite Researchers recommend that users of
OPTO 22 PAC Control Basic do not engage with any files
from non-verified sources, as they have the potential
to be malicious in nature. Once a patch is released,
update the software suite as soon as possible.

VERSPRITE | VULNERABILITY ADVISORY REPORT09

This report raises awareness on OPTO 22’s software
vulnerability within the PAC Control Basic software suite. As
demonstrated, the file parsing vulnerability results from
incorrect file format parsing prior to file stream
manipulation within the Control.Basic.exe binary when
parsing malicious ibd files.

Importantly, file parsing vulnerabilities can come in
various iterations. For example, these security issues can various iterations. For example, these security issues can
stem from improper usage of APIs or even a product
development team unintentionally introducing a
vulnerability in their own code.

Because of the various ways vulnerabilities are introduced Because of the various ways vulnerabilities are introduced
into software, developers need to know that continuous
testing must be utilized where a mix between code review
and automated code coverage guided fuzzing is
performed. Using code review, developers can use static
analysis to find potential security flaws while coverage
guided fuzzing is performed 24/7. It is important to note
that fuzzing is complimentary to code review and both are that fuzzing is complimentary to code review and both are
equally important when it comes to securing one’s
products.

MITIGATION

CONCLUSION

	00 OPTO 22 Cover
	01 Opto22
	02 Opto22 (timeline)
	03 Opto22
	04 Opto22
	05 Opto22
	06 Opto22
	07 Opto22
	08 Opto22
	09 Opto22

