CONTROL BASIC
ZERO-DAY DISCLOSURE

SECURITY RESEARCH

01 VERSPRITE | VULNERABILITY ADVISORY REPORT

EXECUTIVE SUMMARY

VerSprite's Research and Development Team, VS-Labs,
discovered a vulnerability in OPTO 22's Control Basic
Software suite that affects the Industrial Control System
(Ics) and Operational Technology (OT) industries.

To date, this software remains unpatched and is a
high-critical zero-day vulnerability that can leave ICS and
OT organizations open to attack by malicious actors.

VerSprite's VS-Labs initially discovered the
Control.basic.exe vulnerability in July of 2020. Following
proper protocol, we reached out to OPTO 22 within days of
discovering the vulnerability and gave them ample time to
produce a fix. Due to their inaction, we are releasing the
vulnerability synopsis to raise awareness around this
security issue. Please refer to our Vendor Disclosure
Timeline on page 2 to review the steps we took to uncover
the OPTO 22 PAC Control vulnerability.

HIGH-CRITICAL

RISK LEVEL

02

VERSPRITE | VULNERABILITY ADVISORY REPORT

VENDOR DISCLOSURE TIMELINE

VerSprite Contacted OPTO 22
VerSprite Offered Further Analysis

Juln Augl

VerSprite Submitted

Root Cause Analysis OPTO 22 Responded

From OPTO 22 Rep

‘ |
Sepl Oct1 Nov 1 Decl Jan1 Feb1 Mar1 Aprl May 1
? VerSprite Submitted
VerSprite Reached ~ OPTO 22 Responded Vulnerability to MITRE
VerSprite Received Automatic Qutto OPTO 220n With Estimate to
Response From OPTO 22 Patch Status Release VerSprite Decided to
Release Public
VerSprite Received eMail VerSprite Thanked Disclosure
OPTO 22 For Their
Response

Vendor Disclosure Timeline

07-06-2020

07-06-2020

07-06-2020

07-08-2020

12-08-2020

01-20-2021

01-21-2021

01-22-2021

01-22-2021

03-26-2021

03-29-2021

04-09-2021

Contacted OPTO 22 and submitted initial security
issues to vendor.

Received Automatic response from OPTO 22
Product Support Group {;SG).

Received email from OPTO 22 Representative
explaining they were able to duplicate said issues

We offered to provide some further analysis;
however, due to time constraints with other high
priority clients, we were unable to assist further at
the time.

We reached out to OPTO 22 again in December, to
check on the status of the patching of security
issues and they did not have any updates on when
a fix would be produced.

We submitted a report with root cause analysis and
technical details of the issues to OPTO 22. We also
inquired about when a patch would be available.

OPTO 22 Responded stating that they plan to
release the fixes within PAC 10.14; however, no date
for that version release has been scheduled at that
time.

OPTO 22 Responded to our request of further details
of dates by stating they had a rough estimate of
mid-year and if they received any newer
information, they would email it to us.

We thanked OPTO 22 for their response and let them
know we would reach out in June 2021 to check
status.

After not receiving any new information about
release schedule and further analysis of the
product suite and industry that OPTO 22 operates
within, we decided to move forward with public
disclosure, 8 months is ample time for patching
and remediation, and we feel the public needs to
be aware of risks associated with software that
operates within critical industries. We let OPTO 22
know that they would be releasing the vulnerability
information public within 30 days.

OPTO 22 responded saying that a fix would be
provided in the next PAC Project Version.
VerSprite submitted vulnerability details to MITRE
to receive CVE ID.

03 VERSPRITE | VULNERABILITY ADVISORY REPORT

OPTO22 PAC CONTROL BASIC
VULNERABILITY SYNOPSIS

In the land of software development, a common hurdle
faced by developers is creating secure file parsers. File
parsers are responsible for processing an incoming

file where the file stream data must adhere to a strict
format that the software can accept. Not only is the
parser responsible for processing the file stream data
accurately, but also securely as processing files are
subject to attacker manipulation.

This seems like a simple task. However, in practice, creating
secure file parsers is not that easy, which is demonstrated
by the hundreds (possibly thousands) of file parsing

CVE's released every year from MITRE. File parsing
vulnerabilities have plagued many software development
teams for years and will continue to cause issues if file
parsers remain written in system-level languages like

C or C++, where the memory management is left up to the
developer to handle entirely.

This report demonstrates how developing in system-level
languages results in file parsing errors. VerSprite security
resedrchers perform an initial root cause analysis of a file
format parsing vulnerability they discovered within the
OPTO 22 PAC Control Basic software suite.

This report only covers the basics of file parsing
vulnerabilities, so interested readers are encouraged to
further explore function calls within the main binary
Control.basic.exe imported from the IOCDB.dIl dynamic

04 VERSPRITE | VULNERABILITY ADVISORY REPORT

VULNERABILITY OVERVIEW

VerSprite VS-Labs researchers discovered a vulnerability
within OPTO 22's PAC Control Basic software suite’s main
application, Control.basic.exe. This application’s file parser
is vulnerable due to an Out-of-Bounds Read (OOB|R])
during the parsing of a modified idb file within a projects
strategy folder. The OOB[R] occurs due to misuse of the
ATL/MFC CStringT class constructor. The CStringT class
constructor is responsible for performing string copy
operations, and has the potential for causing memory
exceptions as detailed in the Remarks section of the official
Microsoft Documentation.

Because the constructors copy the input data into new
allocated storage, memory exceptions may result. Some
of these constructors act as conversion functions. This
allows you to substitute, for example, a LPTSTR where a
CSstringT object is expected.

05 VERSPRITE | VULNERABILITY ADVISORY REPORT

REVIEW OF INITIAL
ACCESS VIOLATION

Through utilizing the Windows Debugger (WinDbg Preview)
from the Microsoft Store, we were able to record the Access
Violation during the parsing of the malicious idb file within
the Control.basic.exe binary. The initial Access Violation
recorded with WinDbg's Time Travel Debugger (TTD) can be
seen in the table below.

Malicious-Trigger.idb
File Information:
* SHA256 - 5C61148D316A87849D2EA10008D47141B4DA3BI51C694270671205188565E595
. Command:
o PS C:\Users\User> Get-FileHash C:\Users\User\Desktop\PoCs\Opto22-
Mew\Malicious\Casel\Malicious-Trigger.idb

(19ec.1fe@): Access violation - code c@8880@5 (first/second chance not available)
First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

Time Travel Position: E315A:0

Unable to load image C:\WINDOWS\SYSTEM32\mfc128.dll, Win32 error @n2
2ax=1da7f008 ehx=08d9af28 grx=1daifede gdx=-00008c00 gsi=Pe6feffc gdi=Oesfeffc

€ip=6c6e303a g5p=0919dcl8 ghp=0019dc24 jopl=0 oy up &i Pl nz na po ng
cs=0023 ss=002b ds=002b es=002b fs=0053 gs5=002b efl=00200202
MSVCR120!strlen+@xc:

6c6e303a 8adl mov al,byte ptr [ecx] ds:002b:1da7fode=2?

An important note is that during testing, symbols may
cause issues that were within a VM function and
strepy_s() is recorded. However, within a different VM the
function, strlen() is recorded.

ROOT CAUSE ANALYSIS

The issue stems from an attacker-controlled
boundary condition associated within either a while or
for loop within the sub_6900A0 function within the
Control.basic.exe binary.

06 VERSPRITE | VULNERABILITY ADVISORY REPORT

The attacker-controlled condition (stored within the
pointer at ECX+202h), is first checked against an
incremented counter (stored within var_18), before
progressing further into the loop where a pointer to

a string is passed as an argument to the function name
case_1_atl_string_creation() (modified function name).
The case_1_atl_string_creation() function appears to be
a wrapper for the ATL:CStringT string class constructor
itself. Verification of the initial boundary check is seen

in the image below.

.text:806991BC mov [ebp+var_18], @ ; Initialize Counter (var_18) to NULL

.text:006991C3 jmp short loc_69@1CE ; Initialize "ECX" to be the pointer to the file stream
.text:006901C5 ;

.text: 00690105

.text:006901C5 loc_6901C5: ; CODE XREF: sub_6920AB+198!j

.text:006991C5 mov eax, [ebp+var_18]

.text:0@6901C8 add eax, 1

.text:006991CB mov [ebp+var_18], eax

.text:006901CE

.text:006901CE loc_6901CE: ; CODE XREF: sub_69@0AB+1231j

.text:006901CE mov ecx, [ebp+arg_@] ; Initialize "ECX" to be the pointer to the file stream
.text:00690101 mov edx, [ebp+var_18] ; Initialize "EDX" to be utilized during the boundary condition check
.text:006901D4 cmp edx, [ecx+282h] ; Compare the counter (var_18) against the attacker controlled
.text:006901D4 ; value (ecx+202h)

.text:006901DA jge short loc_69@23A

The counter (var_18), is utilized before the ATL::CStringT
wrapper function call during an imul instruction where the
resulting value, stored within EAX, is used as an index into
the ECX register. Which at this time holds a buffer of file
data extracted from previous CFile::[Open/seek/Read]()
function calls within the IOCDB DLL. The ECX register is then
further indexed by a static offset of 0x206 into the file
stream. The resulting pointer is then assigned to the EDX
register and passed to the ATL::CStringT wrapper function.

07 VERSPRITE | VULNERABILITY ADVISORY REPORT

Verification of the file stream data within ECX and the
usage of the counter during the imul instruction is seen in
the image below.

.text:006901F3 imul eax, [ebp+var_18], 101h ; Multiplication of the "var_18" counter

.text:006901FA mov ecx, [ebp+arg_@] ; Loading of file stream buffer into "ECX"

.text:006901FD lea edx, [ecx+eax+206h] ; Loading string located at "@xlda7d6ce+(var_18%@x1e1)+ex2e6"
.text:@@6901FD 3 into “EDX"

.text:006901FD H

.text:006901FD ; The Argument to "ATL::CStringT" wrapper

.text:006901FD H

.text:@@6901FD ; Verification of "ECX" file stream data during runtime:
.text:@@6901FD 3 8:802> dc ecx

.text:006901FD ; 1da7d6ce 41414141 98414141 G00CLLL0 GOOLLEEO AAAAMAA.........
.text:006901FD ; 1da7déde €600LEe0 POCORELH COOELRRO GRRBRRRO
.text:006901FD ; 1lda7d6e@ £GECLEEE PEEOEOLE COEEEORE PROOGESD

.text:@@6901FD 3 ©8:802> dc ecx+eax+286h

.text:006901FD ; 1da7d8cé ©£000LEEe POCORELH COOELRRO GRRLRRRO
.text:006901FD ; 1da7dede 600LEEe PEEORELE COOELRRO GRRBRRRO
.text:006901FD ; 1da7dSe6 ©£0EOLEEE POCOROLH COOELRRO GOOLRRRO
.text:006901FD ; 1da7defe £eE0LEEe POCORELE COPELRRO GROLRRRO
.text:006901FD ; 1da7d9ec £600eeee POCORELH COOELRRO GRRLRRRO
.text:006901FD ; 1da7d916 ©£600Leee POCORELE COOELRRO GRRBRRRO
.text:006901FD ; 1da7d926 ©£600LEEe POCORELH COOELRRO GRRLRRRO
.text:006901FD ; 1da7d936 ©£000eeee POCORELH COOELRRO GRRLRRRO
.text:00690204 push edx

.text:006902085 mov ecx, [ebp+var_2C]

.text:00690208 call casel_atl_string_creation

.text:0069028D mov [ebp+var_38], eax

.text:00690210 jmp short loc_696219

With each iteration where the counter (var_18) is less than
the attacker-controlled value at offset 0x202 within the file
buffer (ECX[arg_0), the counter is multiplied by 0x101. With
improper bounds checks on the attacker-controlled value
(ECX+202h), it is possible for an Out-of-Bounds Read
condition to present itself. The OOB[R] occurs due to data
outside of the intended file buffer being accessed (read)
during the ATL::CStringT string class constructor because
the [while/for] loop fails to validate that the pointer is within
the proper bounds of the actual file buffer before the
ATL:CStringT wrapper is called.

08 VERSPRITE | VULNERABILITY ADVISORY REPORT

Verification of the file stream data within ECX and the
usage of the counter during the imul instruction can be
seen in the image below.

loc_69@1CE:

mov ecx, [ebpt+arg_e]
mov edx, [ebp+var_18]
cmp edx, [ecx+282h]

jge short loc_69@23A

] 1

8 ; unsigned int
operator new(uint)

esp, 4

[ebp+var_2C], eax

byte ptr [ebp+var_4], 6
[ebp+var_2C], @

short loc_698212

v

imul eax, [ebp+var_18], 1@1h mov ecx, [ebp+var_3:
mov ecx, [ebptarg @] loc_690212: call CTypeLibCacheMaj
lea edx, [ecx+eax+286h] mov [ebp+var_3e], @ mov [ebp+var_38], ei
push edx jmp short loc_69026.
mov ecx, [ebp+var_2C]

call casel_atl_string_creation

mov [ebp+var_3e], eax

jmp short loc_698219

L

vy vy
s =) (=]
loc_6906219: loc_690262:
mov eax, [ebp+var_3@] mov ecx, [ebp+var_38]
mov [ebp+var_58], eax mov [ebp+var_5C], ecx
mov byte ptr [ebp+var_4], 2 mov byte ptr [ebptvar_4], 2
mov ecx, [ebp+var_58] mov edx, [ebp+var_1@]
mov [ebp+var_208], ecx mov eax, [ebp+var_5C]
mov edx, [ebp+var_28] mov [edx+28h], eax
push edx mov [ebp+var_1C], @
mov eax, [ebp+var_10] jmp short loc_690287
mov ecx, [eax+1Ch]
call sub_5887A8
jmp short loc_6901C5

loc_6901C5: loc_6908287:

mov eax, [ebp+var_18] mov edx, [ebpt+arg_e]
add eax, 1 mov eax, [ebp+var_1C]
mov [ebp+var_18], eax cmp eax, [edx+8C1leh]

i - almmd Taa rAaAara

09 VERSPRITE | VULNERABILITY ADVISORY REPORT

MITIGATION

VerSprite Researchers recommend that users of

OPTO 22 PAC Control Basic do not engage with any files
from non-verified sources, as they have the potential
to be malicious in nature. Once a patch is released,
update the software suite as soon as possible.

CONCLUSION

This report raises awareness on OPTO 22's software
vulnerability within the PAC Control Basic software suite. As
demonstrated, the file parsing vulnerability results from
incorrect file format parsing prior to file stream
manipulation within the Control.Basic.exe binary when
parsing malicious ibd files.

Importantly, file parsing vulnerabilities can come in
various iterations. For example, these security issues can
stem from improper usage of APIs or even a product
development team unintentionally introducing a
vulnerability in their own code.

Because of the various ways vulnerabilities are introduced
into software, developers need to know that continuous
testing must be utilized where a mix between code review
and automated code coverage guided fuzzing is
performed. Using code review, developers can use static
analysis to find potential security flaws while coverage
guided fuzzing is performed 24/7. It is important to note
that fuzzing is complimentary to code review and both are
equally important when it comes to securing one’s
products.

	00 OPTO 22 Cover
	01 Opto22
	02 Opto22 (timeline)
	03 Opto22
	04 Opto22
	05 Opto22
	06 Opto22
	07 Opto22
	08 Opto22
	09 Opto22

