

Title: VOC Test Results

Product: Echo Eliminator (1" 3lb White)

Application: Acoustical Absorption

Testing Standard: CDPH Standard Method V1.2-2017

Test Date: September 21, 2018 to October 5, 2018

Why this test: This test identifies volatile organic compounds (VOCs), such as formaldehyde, released into the air by products. Samples are put into an environmental chamber and the air is tested at 11-, 12- and 14-days. VOC levels are then used to predict office and school room concentrations and then compared to maximum allowable levels.

Test Result Summary:

MODELING SCENARIO	RESULT (PASS/FAIL)	TVOC (mg m ⁻³)
Private Office (PO)	PASS	0.2
School Classroom (SC)	PASS	0.1

Test ID: 103632425GRR-002ar

Note: Product sampled from ASI warehouse and tested according to the CDPH standard.

ASI makes every effort to ensure the accuracy and reliability of the information provided. Laboratory testing is conducted by independent testing organizations. ASI does not guarantee that field tests or independent tests will not vary.

©2019 ASI

ASI TEST REPORT

SCOPE OF WORK

Standard Method Version 1.2 for CDPH 01350 on Echo Eliminator

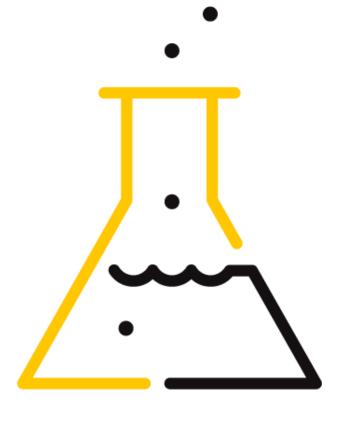
REPORT NUMBER

103632425GRR-002ar

ISSUE DATE

REVISION DATE

18-October-2018 22-


22-October-2018

PAGES

14

DOCUMENT CONTROL NUMBER

Per GFT-OP-10 (6-March-2017) © 2018 INTERTEK

Report No.: 103632425GRR-002ar

Date: 18-October-2018

P.O.: 00065831

Revision Date: 22-October-2018

SECTION 1

CLIENT INFORMATION

Attention:

Conor Cook

ASI

123 Columbia Court N Chaska, MN 55318

Phone:

(952) 466-8261

Email:

ccook@acousticalsurfaces.com

Amanda Tongen Project Engineer Jesse Ondersma, Ph.D.

4700 Broadmoor Ave SE, Suite 200

+1 616 656 7401

+1 616 656 2022

Kentwood, MI 49512

www.intertek.com

Telephone:

Facsimile:

Project Reviewer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Date: 18-October-2018

Revision Date: 22-October-2018

SECTION 2

SUMMARY AND CONCLUSION

Test Method: Standard Method Version 1.2 for CDPH 01350 Modeling Scenario: Private office (PO) and school classroom (SC)

Method Deviations: Testing performed without deviation unless noted below. The

acetaldehyde blank was above 2.0 µg m⁻³. There is not

P.O.: 00065831

Report No.: 103632425GRR-002ar

expected to be an effect on testing.

DESCRIPTION OF SAMPLES

Manufacturer / Location ASI / Chaska, MN
Product Name Echo Eliminator
Product Number Not Specified

Date of Manufacture 19-September-2018
Date of Collection 19-September-2018
Date of Shipment 19-September-2018
Date Received by Lab 20-September-2018

Date of Test Start and Duration 21-September-2018 / 336 hours

As Received Sample Condition Good Condition
Lab Sample ID GRR180920000E

WORK REQUESTED/APPLICABLE DOCUMENTS

VOC Emissions Analysis: CDPH Standard Method v1.2

Intertek Quote: Qu-00901125

TEST RESULTS

MODELING SCENARIO	RESULT (PASS/FAIL)	TVOC (mg m ⁻³)
Private Office (PO)	PASS	0.2
School Classroom (SC)	PASS	0.1

SAMPLE DISPOSITION

At the completion of testing, samples were disposed of in a routine manner.

Date: 18-October-2018

Revision Date: 22-October-2018

SECTION 3

CDPH STANDARD METHOD V1.2

Date Received: 20-September-2018

Dates Tested: 21-September-2018 to 05-October-2018

DESCRIPTION OF SAMPLES:

Part Description: Acoustical Panel for Absorption

Material Submitted: Four (4) Recycled Fiber, Borax, and Boric Acid Panels

Report No.: 103632425GRR-002ar

P.O.: 00065831

ACCEPTANCE CRITERIA:

Referencing: CDPH Standard Method v1.2, Table 4.1

LEED v4 - Low Emitting Materials

LEED v4 - TVOC Ranges: $\leq 0.5 \text{ mg m}^{-3}$

 $0.5 \text{ to } 5.0 \text{ mg m}^{-3}$ $\geq 5.0 \text{ mg m}^{-3}$

TEST NOTES OR DEVIATIONS:

Testing performed without deviation unless noted below.

TEST SUMMARY:

The emissions testing was performed according to "Standard Method for the Evaluation of Volatile Organic Chemical Emissions from Indoor Sources using Environmental Chambers Version 1.2". A photograph of the tested sample is included herein. The sample was cut to an appropriate size to achieve the desired loading factor. The edges were sealed with aluminized tape. The sample was placed in conditioning in the chamber for 10 days with top and bottom surfaces exposed, before testing was initiated. Air samples were collected prior to the sample being placed in the test chamber (0 hours) and at 264, 288, and 336 hours after placement in the test chamber. Samples analyzed for individual VOCs and TVOC were collected on multi-sorbent tubes containing glass wool, Tenax TA 35/60 and Carbograph 5 TD 40/60. These VOC samples were analyzed by thermal desorption-gas chromatography/mass-spectrometry, TD-GC/MS. TVOC was calculated through integration of the chromatogram from n-pentane through n-heptadecane using toluene as a surrogate. Individual VOCs were calculated using calibration curves based on pure standards unless otherwise noted. Samples analyzed for low molecular weight aldehydes were collected on cartridges treated with 2,4-dinitrophenylhydrazine (DNPH). Low molecular weight aldehydes were analyzed using high performance liquid chromatography, HPLC.

Date: 18-October-2018

Revision Date: 22-October-2018

Report No.: 103632425GRR-002ar

P.O.: 00065831

RESULTS:

Table 1: Sample and Chamber Conditions during Test Period

PARA	PARAMETER		VALUE	UNITS
Cample	Length	1	0.248	m
Sample Dimensions	Width	ı	0.255	m
Difficusions	Thickness	-	-	m
Exposed Sample	Surface Area	Α	0.063	m ²
Chamber Volume	9	V	0.116	m ³
Chamber Loading Factor		L	0.54	$m^2 m^{-3}$
Inlet Air Flow Rate		Q	0.116	$m^3 h^{-1}$
Air Change Rate		N _{ACH}	0.99	h ⁻¹
Area Specific Flov	w Rate	q_A	1.83	m h ⁻¹
Chamber Pressur	e (Range)	Р	16.2 (14.8-18.3)	Pa
Average Temperature (Range)		T	23.1 (23.0-23.2)	°C
Average Humidit	y (Range)	RH	50.0 (48.1-51.7)	% RH
Testing Duration		t	336	h

Table 2: Test chamber background VOC concentrations in μg m⁻³.

COMPOUND	CAS No.	Cio
Formaldehyde	50-00-0	1.0
TVOC	-	3.8

Table 3: Test chamber TVOC and formaldehyde concentrations in $\mu g\ m^{-3}$.

COMPOUND	CAS No.	264 H	288 H	336 H
Formaldehyde	50-00-0	2.8	2.3	2.4
TVOC	-	88.5	78.9	77.3

Table 4: Test chamber TVOC and formaldehyde emission factors in $\mu g \ m^{-2} \ h^{-1}$.

COMPOUND	CAS No.	264 H	288 H	336 H
Formaldehyde	50-00-0	3.4	2.4	2.5
TVOC	-	155	138	135

^{*}BB – Below Blank

Date: 18-October-2018

Revision Date: 22-October-2018

Report No.: 103632425GRR-002ar

P.O.: 00065831

Individual emitted VOCs identified above the lower limits of quantitation are listed in Table 7; VOCs which are listed on chemical of concern lists or have CRELs are indicated.

The measured chamber concentrations and corresponding emission factors of identified individual VOCs and TVOCs are listed in Table 8.

In Tables 6, 8 and 9, emission factors were calculated using equation 3.1 in CDPH Standard Method V1.2:

$$EF_{Ai} = \frac{Q \times (C_{it} - C_{i0})}{A_C}$$

The inlet flow rate, Q (m³ h⁻¹), is the measured flow rate of air into the chamber. The chamber concentration, C_{it} (µg m⁻³), is the concentration of a target VOC_i, formaldehyde and other carbonyl compounds measured at time t. The chamber background concentration, C_{io} (µg m⁻³), is the corresponding concentration measured with the chamber operating without a test specimen. The exposed projected surface area of the test specimen in the chamber, A_C (m²), is determined from the measurements made at the time of specimen preparation.

Table 5: VOCs detected above lower limits of quantitation in air samples at 336 hours.

voc	CAS No.	SURROGATE ¹	CREL ² (μg m ⁻³)	CARB TAC ³	PROP 65 LIST⁴
Formaldehyde	50-00-0		9	Yes	Yes
Toluene	108-88-3		300	Yes	No
Unknown	-	Х	-	-	-
Butylated Hydroxytoluene	128-37-0	Х	NA	No	No

¹Indicates which non-listed VOCs were quantified using surrogate compounds, all other compounds were quantified using pure compounds.

²Chronic Reference Exposure Level (CREL) as defined by California Office of Environmental Health Hazard Assessment.

³Substance is listed on California Air Resource Board's (CARB) Toxic Air Contaminate (TAC) identification list.

⁴Substance known to the state of California to cause cancer or reproductive toxicity according to California's Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65).

Date: 18-October-2018

Revision Date: 22-October-2018

Report No.: 103632425GRR-002ar

P.O.: 00065831

Table 6: Measured chamber concentrations and corresponding emission factors of individual VOCs listed in Table 4-1 of CDPH 01350 V1.2. at 336 hours.

nisted ii	listed in Table 4-1 of CDPH 01550 V1.2. at 556 flours.						
		CHAMBER	EMISSION FACTOR				
VOC	CAS No.	CONCENTRATION	(μg m ⁻² h ⁻¹)				
Formaldehyde	50-00-0	(μg m ⁻³) 2.4	2.5				
Acetaldehyde	75-07-0	< 4.5	< 8.3				
Vinyl acetate	108-05-4	< 0.4	< 0.7				
•							
Epichlorohydrin	106-89-8	< 0.2	< 0.4				
Ethanol, 2-methoxy-, acetate	110-49-6	< 0.3	< 0.6				
Isopropyl Alcohol	67-63-0	< 0.2	< 0.3				
Ethene, 1,1-dichloro-	75-35-4	< 0.2	< 0.3				
Methylene chloride	75-09-2	< 0.3	< 0.5				
Carbon disulfide	75-15-0	< 0.5	< 0.9				
Methyl tert-butyl ether	1634-04-4	< 0.5	< 0.9				
n-Hexane	110-54-3	< 0.3	< 0.5				
Trichloromethane (Chloroform)	67-66-3	< 0.3	< 0.5				
Ethanol, 2-methoxy-	109-86-4	< 0.4	< 0.7				
Ethane, 1,1,1-trichloro-	71-55-6	< 0.2	< 0.3				
Benzene	71-43-2	< 0.3	< 0.5				
Carbon Tetrachloride	56-23-5	< 0.2	< 0.4				
2-Propanol, 1-methoxy-	107-98-2	< 0.2	< 0.4				
Ethylene glycol	107-21-1	< 8	< 14.7				
Trichloroethylene	79-01-6	< 0.2	< 0.3				
1,4-Dioxane	123-91-1	< 0.2	< 0.3				
Ethanol, 2-ethoxy-	110-80-5	< 0.4	< 0.7				
Toluene	108-88-3	0.3	0.5				
Formamide, N,N-dimethyl-	68-12-2	< 0.4	< 0.7				
Tetrachloroethylene	127-18-4	< 0.2	< 0.3				
Benzene, chloro-	108-90-7	< 0.2	< 0.3				
Ethylbenzene	100-41-4	< 0.2	< 0.3				
	108-38-3,						
Xylene (-m, -p, & -o)	95-47-6,	< 0.6	< 1.1				
	106-42-3						
Styrene	100-42-5	< 0.1	< 0.2				
2-Ethoxyethyl acetate	111-15-9	< 0.5	< 0.9				
Phenol	108-95-2	< 0.5	< 0.9				
Benzene, 1,4-dichloro-	106-46-7	< 0.1	< 0.2				
Isophorone	78-59-1	< 0.2	< 0.3				
Naphthalene	91-20-3	< 0.2	< 0.4				

Date: 18-October-2018

Revision Date: 22-October-2018

Report No.: 103632425GRR-002ar

P.O.: 00065831

Table 7: Measured chamber concentrations and corresponding emission factors of identified individual VOCs and TVOC at 336 hours.

voc	CAS No.	CHAMBER CONCENTRATION (µg m ⁻³)	EMISSION FACTOR (μg m ⁻² h ⁻¹)
Unknown	-	5.4	10.0
Butylated Hydroxytoluene	128-37-0	46.8	85.7
TVOC	-	77.3	135

Exposure Scenario Modeling and Evaluation:

Estimated building concentrations for the private office and school classroom scenarios were calculated using equation 3.2a of CDPH Standard Method V1.2:

$$C_{Bi} = \frac{EF_{Ai} \times A_B}{Q_B}$$

The area specific emission rate EF_A at 336 hours (14 days) total exposure time is multiplied by the ratio of the exposed surface area of the installed material in the building, A_B (m²), to the flow rate of outside ventilation air, Q_B (m³ h⁻¹).

The modeling parameters used for private office and school classroom scenarios are listed in Table 10.

The modeled concentrations of identified individual VOCs for private office and school classroom scenarios are listed in Tables 11 & 12. Whether the modeled concentrations meet the maximum allowable concentration requirements specified in Table 4.1 of CDPH Standard Method V1.2 are also indicated.

Table 8: Standard modeling parameters for wallcovering.

PARAMETER	SYMBOL	VALUE	UNITS
Exposed Surface Area Installed in <i>Private Office</i> (PO)	A_B	33.4	m²
Air flow rate of <i>Private Office (PO)</i>	Q_B	20.7	m³ h ⁻¹
Exposed Surface Area Installed in Classroom (SC)	A_B	94.6	m²
Air flow rate of Classroom (SC)	Q_B	191	m³ h ⁻¹

Date: 18-October-2018

Revision Date: 22-October-2018

Report No.: 103632425GRR-002ar

P.O.: 00065831

Table 9: Projected concentrations of individual VOCs specified in Table 4-1 of CDPH 01350 V1.2.

voc	CAS NO.	PROJECTED CO (μg		CONC.	RESULT Pass (P) /Fail (F)	
		РО	SC	(μg m ⁻³)	РО	SC
Formaldehyde	50-00-0	4.1	1.3	9	Р	Р
Acetaldehyde	75-07-0	< 13.4	< 4.1	70	Р	Р
Vinyl acetate	108-05-4	< 1.2	< 0.4	100	Р	Р
Epichlorohydrin	106-89-8	< 0.6	< 0.2	1.5	Р	Р
Ethanol, 2-methoxy-, acetate	110-49-6	< 0.9	< 0.3	45	Р	Р
Isopropyl Alcohol	67-63-0	< 0.5	< 0.2	3,500	Р	Р
Ethene, 1,1-dichloro-	75-35-4	< 0.5	< 0.2	35	Р	Р
Methylene chloride	75-09-2	< 0.8	< 0.3	200	Р	Р
Carbon disulfide	75-15-0	< 1.5	< 0.5	400	Р	Р
Methyl tert-butyl ether	1634-04-4	< 1.4	< 0.4	4,000	Р	Р
n-Hexane	110-54-3	< 0.8	< 0.3	3,500	Р	Р
Trichloromethane (Chloroform)	67-66-3	< 0.9	< 0.3	150	Р	Р
Ethanol, 2-methoxy-	109-86-4	< 1.2	< 0.4	30	Р	Р
Ethane, 1,1,1-trichloro-	71-55-6	< 0.5	< 0.2	500	Р	Р
Benzene	71-43-2	< 0.8	< 0.2	1.5	Р	Р
Carbon Tetrachloride	56-23-5	< 0.6	< 0.2	20	Р	Р
2-Propanol, 1-methoxy-	107-98-2	< 0.7	< 0.2	3,500	Р	Р
Ethylene glycol	107-21-1	< 23.7	< 7.3	200	Р	Р
Trichloroethylene	79-01-6	< 0.5	< 0.2	300	Р	Р
1,4-Dioxane	123-91-1	< 0.5	< 0.1	1,500	Р	Р
Ethanol, 2-ethoxy-	110-80-5	< 1.2	< 0.4	35	Р	Р
Toluene	108-88-3	0.8	0.3	150	Р	Р
Formamide, N,N- dimethyl-	68-12-2	< 1.2	< 0.4	40	Р	Р
Tetrachloroethylene	127-18-4	< 0.5	< 0.2	17.5	Р	Р
Benzene, chloro-	108-90-7	< 0.5	< 0.2	500	Р	Р
Ethylbenzene	100-41-4	< 0.5	< 0.2	1,000	Р	Р
Xylene (-m, -p, & -o)	108-38-3, 95-47-6, 106-42-3	< 1.8	< 0.6	350	Р	Р
Styrene	100-42-5	< 0.4	< 0.1	450	Р	Р
2-Ethoxyethyl acetate	111-15-9	< 1.4	< 0.4	150	Р	Р
Phenol	108-95-2	< 1.5	< 0.5	100	Р	Р
Benzene, 1,4-dichloro-	106-46-7	< 0.4	< 0.1	400	Р	Р
Isophorone	78-59-1	< 0.5	< 0.1	1,000	Р	Р
Naphthalene	91-20-3	< 0.7	< 0.2	4.5	Р	Р

^{*}Individual VOC of concern is below lower LOQ for modeled scenario.

Date: 18-October-2018

Revision Date: 22-October-2018

Report No.: 103632425GRR-002ar

P.O.: 00065831

Table 10: Projected concentrations of identified non-listed individual VOCs.

VOC	CAS NO.	PROJECTED CO (μg	NCENTRATION m ⁻³)	CONC.	Result Pass (P) /Fail (F)	
VOC	CAS NO.	РО	SC	(μg m ⁻³)	РО	sc
Unknown	-	16.1	4.9	-	-	-
Butylated Hydroxytoluene	128-37-0	138	42.4	1	1	-
TVOC _{Toluene}	-	217	66.7	-	-	-

Date: 18-October-2018

Revision Date: 22-October-2018

Report No.: 103632425GRR-002ar

P.O.: 00065831

PHOTOGRAPHS:

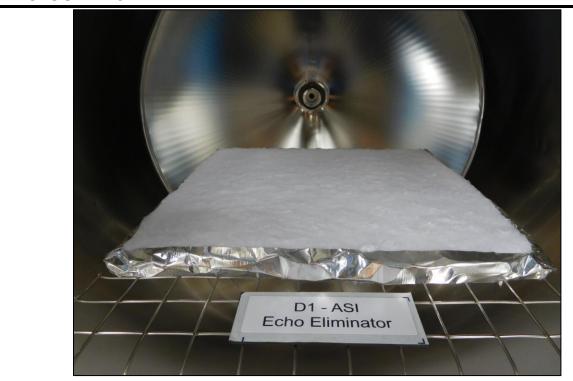


Figure 1: Photograph of sample in test chamber

Date: 18-October-2018

Revision Date: 22-October-2018

Report No.: 103632425GRR-002ar

P.O.: 00065831

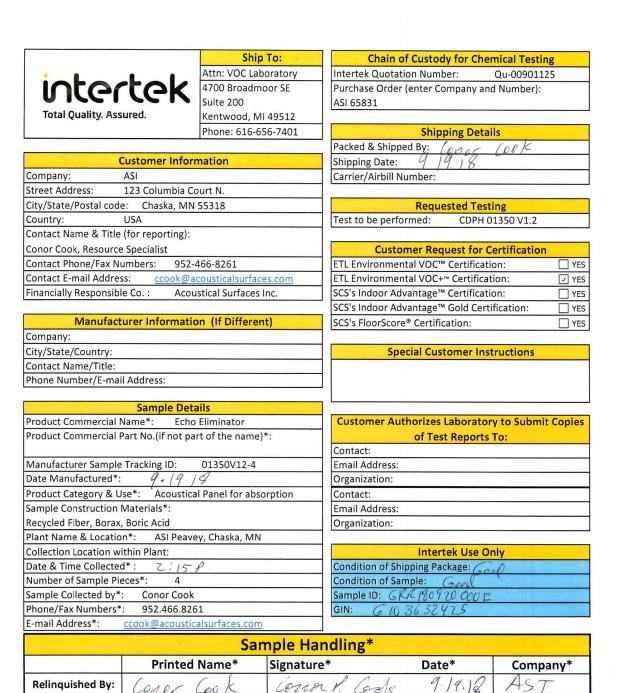
SECTION 4

FACILITIES AND EQUIPMENT:

GCMS				
	Markes TD-100 Thermal			
INSTRUMENTATION USED:	Desorption			
INSTRUMENTATION USED.	Agilent 7890A GC			
	Agilent 5975C MS			
COLUMN USED:	Agilent HP-Ultra 2 (GC)			
HPLC				
INSTRUMENTATION USED:	Agilent 1260 Infinity Series			
COLUMN USED:	Poroshell 120 EC-C18			

Date: 18-October-2018

Revision Date: 22-October-2018


Report No.: 103632425GRR-002ar

P.O.: 00065831

SECTION 5

CHAIN OF CUSTODY

Received by:

98/8

Date: 18-October-2018

Revision Date: 22-October-2018

Report No.: 103632425GRR-002ar

P.O.: 00065831

SECTION 6

REVISIONS MADE TO TEST REPORT

INDEX	DATE	REVISION DESCRIPTION	REVISED BY	REVIEWED BY
-002a	18-October-2018	Initial Release.	Amanda Tongen Anal Tryn	Jesse Ondersma
-002ar	22-October-2018	Include only Office and Classroom Scenarios.	Amanda Tongen Amada Tongan	Jesse Ondersma