
RasberryPI 3 ModelB Database Benchmarking 
HarperDB and SQLite 



Overview  

The purpose of this benchmark test was to evaluate an HTAP use case commonly found in IoT 
architectures.  The goal was to evaluate data writes and aggregate reads to demonstrate 
increasing data size and real-time analytical capability. For the scope of this test HarperDB was 
compared in contrast to SQLite1, a popular IoT database on the same Rasberry PI 3 Model B2 

Methodology

To evaluate both solutions simple apps were created using Node.js.  In HarperDB the native REST 
API was utilized.  In SQLite the sqlite33 and mydb.db 4libraries were utilized.  The app takes both 
databases through the same process.  In each test the data is purged before the next test is run.  
A varying number of records are simultaneously inserted into each product.  The results are then 
queried in aggregate using a SELECT COUNT SQL query.  In each case the steps that make up 
the process are designed to benefit each product.  The process appears as follows in each app: 

HarperDB 

1. create_schema
2. create_table
3. begin timer
4. insert
5. select count sql statement
6. end timer
7. drop table

SQLite 

1. drop_table if exists
2. create_table
3. begin timer
4. prepared statement insert
5. select count sql statement
6. timer end

As you can see from the above, the insert and the select statements are the only elements of the 
test being timed.  Each table is named “dog”.  Each insert has the same four attributes/columns: 
id, name, age, and breed.  The id column is a randomly generated UUID using the uuid/v4 
package in Node.    

Both SQL statements look as follows: “SELECT count(id) from dog” 

In HarperDB the id column is defined as the hash column and the remaining columns are 
dynamically indexed upon insert.  This is native to HarperDB and a feature that cannot be 
disabled.   To reduce overhead on SQLite only the primary key is indexed and this is the column 
used in both SQL queries.   

We performed the test inserting 1, 10, 100, 500, 1000, 2500, and 5000 records into the database. 
To avoid variance in the results each test was performed 5 times at each level.  The results 
displayed below represent the average of each test.  

The code for the tests can be downloaded and examined here: 
https://github.com/HarperDB/harperdb-sqlite-benchmark

1 https://www.sqlite.org/index.html 
2 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ 
3 https://www.npmjs.com/package/sqlite3 
4 https://www.npmjs.com/package/mydb 



Test Results 

HarperDB outperformed SQLite on all test cases, and on average was 581% faster.  The 

greatest difference was seen at a 1,000 record insert where HarperDB was 901.30% faster than 

SQLite where the roundtrip was 20955.88ms for SQLite and 2305.06ms 

or HarperDB.  The averaged test results can be seen in the charts below.  

Number of Records Product Avg. Time (ms) 
1 SQLite 154.75 

1 HarperDB 44.08 

10 SQLite 189.48 

10 HarperDB 175.76 

100 SQLite 1848.91 

100 HarperDB 314.27 

500 SQLite 9951.51 

500 HarperDB 1250.17 

1000 SQLite 20955.88 

1000 HarperDB 2325.06 

2500 SQLite 51707.10 

2500 HarperDB 9052.419 

5000 SQLite 104507.74 

5000 HarperDB 22303.44 

Average time(ms) by 

number of records 

Graphical 

Representation 




