
Benchmarking
HarperDB v. InfluxDB
May 2020

HarperDB Inc. | 1001 17th St. Suite 680. Denver, CO 80202 | hello@harperdb.io

Overview
We built HarperDB out of frustration with the existing landscape of database
products. As a result, with the release of HarperDB 2.0, we wanted to see
how we stacked up against the most popular time series database in the
world, InfluxDB. Turns out, we’re faster across the board, but for concurrent
reads it’s just silly.

We asked an external technology team, Mycos Technologies, to create a
simple benchmark for HarperDB compared against a modern, analytical, simple benchmark for HarperDB compared against a modern, analytical,
highly-available database, InfluxDB. We believe HarperDB is easier to use
and provides more flexibility than InfluxDB. In this benchmark, we intend
to prove that HarperDB holds up performance-wise as well.

 HarperDB is up to 6.8 times faster than InfluxDB on writes.

 InfluxDB struggled significantly with concurrent read benchmarking.

 HarperDB uses half the system resources of InfluxDB at scale.

 HarperDB scales out-of-the-box for concurrent operations, InfluxDB
 crashed.

Highlights

HarperDB Inc. | 1001 17th St. Suite 680. Denver, CO 80202 | hello@harperdb.io2

HarperDB Inc. | 1001 17th St. Suite 680. Denver, CO 80202 | hello@harperdb.io3

Methodology
This benchmark evaluates data writes, data reads, and a combination of reads and writes
on HarperDB and InfluxDB. Tests were executed on both databases using their default
configurations. Benchmarks were executed based on recommended benchmarking best
practices for both databases. The benchmark tests were executed using Apache JMeter
for 10 minutes, with a 10-second ramp-up, and with a simulated user count of 1, 10, and 50.
Database requests were executed via HTTP API endpoints for both HarperDB and
InfluxDB.InfluxDB.

The following tests were executed on both databases:

Each test was run two times and using the following order of operations:

1. Create schema/table for HarperDB or database/measurement for InfluxDB
2. Loop test action for 10 minutes. Test actions:
 a. Write a single, randomly generated record to the database
 b. Read a single, randomly selected record from the database
 c. Write a single, randomly generated record to the database, then read a single
 randomly generated record form the database
3. Clean environment

/ Write data with 1 user
/ Read data with 1 user
/ Read/write data with 1 user
/ Write data with 10 users
/ Read data with 10 users
/ Read/write data with 10 users
/ / Write data with 50 users
/ Read data with 50 users
/ Read/write data with 50 users

This benchmark shows that HarperDB is faster than InfluxDB in every benchmark test. The only
case where the two databases performed comparably was large scale concurrent data writes,
which is what time series databases are designed for. In the concurrent data read cases
InfluxDB is crippled. Moving from 1 to 10 concurrent users querying InfluxDB resulted in a 5x
reduction in samples returned within the test period, consequently moving from 10 to 50 users
crashed InfluxDB on the server. Write and read data tests on InfluxDB for 10 and 50 users
resulted in error response rates of 3.4% and 8.0% respectivelresulted in error response rates of 3.4% and 8.0% respectively.

Test Results

Figure 2: Record Throughput Results per Database, Click to Enlarge

HarperDB Inc. | 1001 17th St. Suite 680. Denver, CO 80202 | hello@harperdb.io5

Data Format
In all tests, object data was generated with the following 7 attributes:

Read tests requested a single record from a query request filtering on a
random id value

Figure 1: Click to Enlarge

The read and write test sequentially writes data and then reads data per looped iteration.

HarperDB Inc. | 1001 17th St. Suite 680. Denver, CO 80202 | hello@harperdb.io

Figure 3: HarperDB Performance Multiplication Factor Compared to InfluxDB, Click to Enlarge

6

Time series databases are designed for high throughput ingestion, InfluxDB proved to be
effective at that with relative performance improving as concurrent writers increased. Where
they fall flat is concurrent data reads, that is evident in the test results with read performance.

Our goal in developing HarperDB was to build a product that would empower developers
through ease of use while remaining highly scalable across all use cases, while not settling
just read or just write performance. The benchmark results have demonstrably shown that
HarperDB is effective for both reads and writes. HarperDB is built to be simple to install and HarperDB is effective for both reads and writes. HarperDB is built to be simple to install and
use, without requiring costly product experts for tuning. We feel that this test conclusively
demonstrates that at scale with numerous clients, HarperDB is more performant and can be
scaled out cost-effectively.

Questions, comments, or feedback? Email us at benchmarks@harperdb.io

Curious if HarperDB is more performant than other tools you're using? Use code
HARPERRUNSFAST when signing up for HarperDB Cloud and receive $300 in credits towards
our paid tiers our paid tiers

Conclusion

Evaluation Machine Specs

