

Effective React Development with Nx
A practical guide to full-stack React development in a
monorepo

Jack Hsu and Juri Strumpflohner

This book is for sale at http://leanpub.com/effective-react-with-nx

This version was published on 2022-01-24

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build traction once you do.

© 2019 - 2022 Jack Hsu and Juri Strumpflohner

http://leanpub.com/effective-react-with-nx
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Introduction . 1
Monorepos to the rescue! . 1
Why Nx? . 2
Is this book for you? . 2
How this book is laid out . 3

Chapter 1: Getting started . 5
Creating a Nx workspace . 5
Nx workspace configuration . 10
Nx commands . 15
Preparing for development . 18

Chapter 2: Libraries . 21
Apps and Libs . 21
The generate command . 24
Feature libraries . 24
UI libraries . 29
Using the UI library . 36
Data-access libraries . 38
Enforcing module boundaries . 45

Chapter 3: Working effectively in a monorepo 51
The dependency graph . 51
Only recompute affected projects . 53
Computation Caching . 58
Adding the API application . 61
Automatic code formatting . 71

Chapter 4: Bringing it all together . 72

CONTENTS

Checkout API and shared models . 72
Cart data-access library . 73
Cart feature library . 82
Wiring up add button in books feature . 86
Building for production . 92

Introduction
If you’ve ever worked at a company with more than one team, chances are
you’ve had to deal with some challenges when it comes to changemanagement.

In a typical work setting, development teams are divided by domain or technol-
ogy. For example, one team building the UI in React, and another one building
the API in Express. These teams usually have their own code repositories, so
changes to the software as a whole requires juggling multiple repositories.

A few problems that arise from a multi-repository (often called “Polyrepo”)
setup include:

• Lack of collaboration because sharing code is hard and expensive.

• Lack of consistency in linting, testing, and release processes.

• Lack of developermobility between projects because accessmay be unavail-
able or the development experience varies too greatly.

• Difficulty in coordinating changes across repositories.

• Late discovery of bugs because they can only occur at the point of integra-
tion rather than when code is changed.

Monorepos to the rescue!

A lot of successful organizations such as Google, Facebook, and Microsoft–and
also large open source projects such as Babel, Jest, and React–are all using the
monorepo approach to software development.

What is a monorepo though? A monorepo is a single repository containing
multiple distinct projects, where we don’t just have code collocation, but well-
defined relationships among these projects. As you will see in this book, a

Introduction 2

monorepo approach - when done correctly - can save developers from a great
deal of headache and wasted time.

Still there are quite some misconceptions when it comes to monorepos.

• Monorepos are monolithic and not for building microservices and mi-
crofrontends1

• Continuous integration (CI) is slow

• “Everyone can changemy code”

• Teams losing their autonomy

All of the above will be addressed throughout this book.

Why Nx?

Nx is a fast, smart and extensible build system that helps teams develop
applications at any scale. It integrates with modern frameworks and libraries,
provides computation caching and smart rebuilds, as well as code generators.

Is this book for you?

This book assumes that you have prior experienceworkingwith React, so it does
not go over any of the basics. We will also make light use of the Hooks API,
however understanding it is not necessary to grasp the concepts in this book.

Nx generates TypeScript code by default, so we’ll be using that in our examples
throughout the book. Don’t fret if this is your first introduction to TypeScript.
We will not be using any advanced TypeScript features so a good working
knowledge of modern JavaScript is more than enough.

Consequently, this book might be for you if:
1https://blog.nrwl.io/misconceptions-about-monorepos-monorepo-monolith-df1250d4b03c

https://blog.nrwl.io/misconceptions-about-monorepos-monorepo-monolith-df1250d4b03c

Introduction 3

• You just heard about Nx and want to know more about how it applies to
React development.

• You use React at work and want to learn tools and concepts to help your
team work more effectively.

• Youwant to use great tools that enable you to focus onproduct development
rather than environment setup.

• You use amonorepo but have struggled with its setup. Or perhaps you want
to use a monorepo but are unsure how to set it up.

• You are pragmatic person who learns best by following practical examples
of an application development.

On the other hand, this book might not be for you if:

• You are already proficient at using Nx with React and this book may not
teach you anything new.

• You hatemonorepos so much that you cannot stand looking at them.

Okay, the last bullet point is a bit of a joke, but there are common concerns
regarding monorepos in practice.

How this book is laid out

This book is split into three parts.

In chapter 1we begin by setting up themonorepoworkspacewithNx and create
our first application–an online bookstore. We will explore a few Nx commands
that work right out of the box.

In chapter 2 we build new libraries to support a book listing feature.

In chapter 3 we examine how Nx deals with code changes in the monorepo by
arming us with intelligent tools to help us understand and verify changes. We
will demonstrate these Nx tools by creating an api backend application.

Introduction 4

In chapter 4 we wrap up our application by implementing the cart feature,
where users can add books to their cart for check out. We will also look at
building and running our application in production mode.

Chapter 1: Getting started
Let’s start by going through the terminology that Nx uses.

Workspace
A folder created using Nx that contains applications and libraries, as well
as scaffolding to help with building, linting, and testing.

Project
An application or library within the workspace.

Application
A package that uses multiple libraries to form a runnable program. An
application is usually either run in the browser or by Node.

Library
A set of files that deal with related concerns. For example, a shared compo-
nent library.

Now, let’s create our workspace.

Creating a Nx workspace

You can create the workspace as follows:

npx create-nx-workspace@latest

Note: The npx binary comes bundled with NodeJS. It allows you to con-
veniently install then run a Node binary without the need to install it
globally.

Chapter 1: Getting started 6

Nx will ask you for a workspace name. Let’s use acme as it is the name of
our imaginary organization. The workspace name is used by Nx to scope our
libraries, just like npm scoped packages.

Next, you’ll be prompted to select a preset–choose the react option.

Creating a workspace

After choosing the preset, you’ll be prompted for the application name, and the
styling format youwant to use. Let’s use bookstore as our application name and
styled-components for styling.

https://docs.npmjs.com/misc/scope

Chapter 1: Getting started 7

Choosing a style option

In addition, Nx asks about setting up Nx Cloud2. Nx Cloud adds remote dis-
tributed computation caching and other performance enhancing features to the
Nx workspace. Even though it is the commercial addon for Nx, it comes with a
generous free tier. So feel free to go ahead and enable it or skip it entirely.

Note: If you prefer Yarn over npm, you can pass the
--packageManager=yarn flag to the create-nx-workspace.

Once Nx finishes creating the workspace, we will end up with something like
this:

2https://nx.app

https://nx.app

Chapter 1: Getting started 8

.
├── apps
│ ├── bookstore
│ │ ├── src
│ │ ├── jest.config.js
│ │ ├── project.json
│ │ ├── tsconfig.app.json
│ │ ├── tsconfig.json
│ │ └── tsconfig.spec.json
│ └── bookstore-e2e
│ ├── src
│ ├── cypress.json
│ ├── project.json
│ └── tsconfig.json
├── libs
├── babel.config.json
├── jest.config.js
├── jest.preset.js
├── README.md
├── nx.json
├── package-lock.json
├── package.json
├── tools
│ ├── generators
│ └── tsconfig.tools.json
├── tsconfig.base.json
└── workspace.json

The apps folder contains the code of all applications in our workspace. Nx has
created two applications by default:

• The bookstore application itself; and

• A set of end-to-end (E2E) tests written to test the bookstore application
using Cypress3.

The libs folder will eventually contain our libraries (more on that in Chapter 2).
It is empty for now.

3https://www.cypress.io/

https://www.cypress.io/

Chapter 1: Getting started 9

The tools folder can be used for scripts that are specific to the workspace. The
generated tools/generators folder is for Nx’s workspace generators feature
whichyou can learnmore aboutby reading thedocumentationathttps://nx.dev/generators/workspace-
generators.

The nx.json file configures Nx. We’re going to have a closer look at that in
Chapter 4.

To serve the application, use this command:

npm start

The above command uses the start script in the main package.json which
builds the bookstore application and then starts a development server at port
4200.

When we navigate to http://localhost:4200 we are presented with a friendly
welcome page.

https://nx.dev/generators/workspace-generators
http://localhost:4200

Chapter 1: Getting started 10

The generated welcome page

Nx workspace configuration

Nx is built in a modular fasion consisting of a core infrastructure that provides
the foundation such as for the dependency graph calculation, running genera-
tors and migrations, computation caching and more, and a set of plugins that
provide technology specific features (such as @nrwl/react for React develop-
ment). Those plugins are developed andmaintained by the Nx core team aswell
as the community4).

4https://nx.dev/community

https://nx.dev/community

Chapter 1: Getting started 11

This allows to gradually dive deeper into the Nx features or simply to just start
in a more lightweight fasion. You could easily just use the Nx core5 and rely on
other tooling such as Yarn/Npm workspaces to do the linking. Yet, you would
miss out on a lot of features.

In this bookwe’re going full-in. This allows us to explore all the features Nx can
bring to the table when it comes to React development and thus set us up to be
most productive. This setup comes with some configuration files that provide
Nx with the necessary meta-data to be able to best reason about the structure
of the underlying workspace. Let’s briefly explore them in more detail.

The previously generated workspace comes with the follow Nx specific configu-
ration files:

• nx.json

• workspace.json

• project.json

The nx.json is at the root of theworkspace and configures theNxCLI. It allows to
specify things such as defaults for projects and code scaffolding, the workspace
layout, task runner options and computation cache configuration and more.
Here’s an excerpt of what got generated for our example workspace.

{
"npmScope": "acme",
"affected": {

"defaultBase": "main"
},
"cli": {

"defaultCollection": "@nrwl/react"
},
"implicitDependencies": {

"package.json": {
"dependencies": "*",
"devDependencies": "*"

5https://nx.dev/getting-started/nx-core

https://nx.dev/getting-started/nx-core

Chapter 1: Getting started 12

},
".eslintrc.json": "*"

},
"tasksRunnerOptions": {

"default": {
"runner": "@nrwl/workspace/tasks-runners/default",
"options": {

"cacheableOperations": ["build", "lint", "test", "e2e"]
}

}
},
"targetDependencies": {

"build": [
{
"target": "build",
"projects": "dependencies"

}
]

},
"generators": {

"@nrwl/react": {
"application": {

"style": "styled-components",
"linter": "eslint",
"babel": true

},
...

}
},
...

}

The workspace.json file in the root directory is optional. It’s used to list the
projects in your workspace explicitly, instead of having Nx scan the file tree for
all project.json and package.json files.

The project.json file is located at the root of every project in your workspace.
This is where the project specific metadata is defined as well as the “targets”.
A Nx target is literally a “task” that can be invoked on the project. Open the

Chapter 1: Getting started 13

apps/bookstore/project.json of the bookstore application:

{
"root": "apps/bookstore",
"sourceRoot": "apps/bookstore/src",
"projectType": "application",
"targets": {

"build": { ... },
"serve": { ... },
"lint": { ... }
"test": { ... }

},
...

}

It contains targets for invoking a build, serve for serving the app during
development as well as targets for linting (lint) and testing (test). These are
the ones generated by default, but you are free to add your own as well.

Each of these targets comes with a set of things that can be configured. Let’s
have a look at the build target:

{
...
"targets": {

"build": {
"executor": "@nrwl/web:webpack",
"outputs": ["{options.outputPath}"],
"options": {

"compiler": "babel",
"outputPath": "dist/apps/bookstore",
"index": "apps/bookstore/src/index.html",
"baseHref": "/",
"main": "apps/bookstore/src/main.tsx",
"polyfills": "apps/bookstore/src/polyfills.ts",
"tsConfig": "apps/bookstore/tsconfig.app.json",
"assets": [

"apps/bookstore/src/favicon.ico",

Chapter 1: Getting started 14

"apps/bookstore/src/assets"
],
"styles": [],
"scripts": [],
"webpackConfig": "@nrwl/react/plugins/webpack"

},
"configurations": {

"production": {
"fileReplacements": [

{
"replace": "apps/bookstore/src/environments/environment.ts",
"with": "apps/bookstore/src/environments/environment.prod.ts"

}
],
"optimization": true,
"outputHashing": "all",
"sourceMap": false,
"namedChunks": false,
"extractLicenses": true,
"vendorChunk": false

}
}

},
...

},
...

}

Each target comes with a Nx Executor6 definition: @nrwl/web:webpack. An ex-
ecutor is a program (in this case named webpack and located in the @nrwl/web
package) that is used to run the target. In this specific case it will use Webpack
to create the application build. By abstracting the details of how the built is
created into an executor, it takes away the burden of configuring Webpack and
allows Nx to automatically handle Webpack upgrades and optimizations in an
automated fashion, without breaking your workspace. That said, flexibility is
still preserved. The executor comeswith options tomerge in your ownWebpack

6https://nx.dev/executors/using-builders

https://nx.dev/executors/using-builders

Chapter 1: Getting started 15

options and you can totally also create your own custom executor7.

The target comes also with options that are read by the executor to customize
the outcome accordingly. Depending on the executor implementation the tar-
get is using, these options might vary.
Finally there’s the configurations which extends the options and potentially
overrides them with different values. This can be handy when building for dif-
ferent environments. Configurations canbeactivate bypassing the --configuration=<name>
flag to the command.

Nx commands

As we mentioned in the previous section, targets can be invoked. You can curn
them in the form: nx [target] [project].

For example, for our bookstore app we can run the following targets.

Serve the app
npx nx serve bookstore

Build the app
npx nx build bookstore

Run a linter for the application
npx nx lint bookstore

Run unit tests for the application
npx nx test bookstore

Run e2e tests for the application
npx nx e2e bookstore-e2e

Give these commands a try!
7https://nx.dev/executors/creating-custom-builders

https://nx.dev/executors/creating-custom-builders

Chapter 1: Getting started 16

npx nx e2e bookstore-e2e

Lastly, Nx allows us to examine the dependency graph of our workspace with
the npx nx dep-graph command.

Chapter 1: Getting started 17

Dependency graph of the workspace

There isn’tmuch in theworkspace tomake this graphuseful just yet, butwewill
see in later chapters how this feature can help us understand the architecture
of our application, and how changes to code affect various projects within the
workspace.

Install Nx globally (optional)

It’s easier to work with Nx when we have it installed globally. You can do this
by running:

Chapter 1: Getting started 18

npm install -g @nrwl/cli

Check that installation has worked by issuing the command nx --version.

Now you will be able to run Nx commands without going through npx (e.g. nx
serve bookstore).

For the rest of this book, I will assume that you haveNx installed globally. If you
haven’t, simply run all issued commands through npx.

Preparing for development

Let’s end this chapter by removing the generated content from the bookstore
application and adding some configuration to the workspace.

Open up your favorite editor and modify these three files.

apps/bookstore/src/app/app.tsx

import styled from 'styled-components';

const StyledApp = styled.div``;

export const App = () => {
return (

<StyledApp>
<header>

<h1>Bookstore</h1>
</header>

</StyledApp>
);

};

export default App;

apps/bookstore/src/app/app.spec.tsx

Chapter 1: Getting started 19

import { render, cleanup } from '@testing-library/react';

import App from './app';

describe('App', () => {
afterEach(cleanup);

it('should render successfully', () => {
const { baseElement } = render(<App />);

expect(baseElement).toBeTruthy();
});

it('should have a header as the title', () => {
const { getByText } = render(<App />);

expect(getByText('Bookstore')).toBeTruthy();
});

});

apps/bookstore-e2e/src/integration/app.spec.ts

import { getGreeting } from '../support/app.po';

describe('bookstore', () => {
beforeEach(() => cy.visit('/'));

it('should display welcome message', () => {
getGreeting().contains('Bookstore');

});
});

Make sure the tests still pass:

• nx lint bookstore

• nx test bookstore

• nx e2e bookstore-e2e

Chapter 1: Getting started 20

It’s a good idea to commit our code before making any more changes.

git add .
git commit -m 'end of chapter one'

Key points

A typical Nx workspace consists of two types of projects: applications and
libraries.

A newly created workspace comes with a set of targets we can run on the
generated application: lint, test, and e2e.

Nx also has a tool for displaying the dependency graph of all the projects
within the workspace.

Chapter 2: Libraries
We have the skeleton of our application from Chapter 1.

So now we can start adding to our application by creating and using libraries.
Before we dive straight into creating libraries, though, let’s first understand
the concept of libraries in an Nx workspace.

Apps and Libs

A typical Nx workspace is structured into “apps” and “libs”. This separation
helps facilitate more modular architectures by following a separation of con-
cernsmethodology, incentivising the organisation of your source code and logic
into smaller, more focused and highly cohesive units.

Nx automatically creates TypeScript path mappings in the tsconfig.base.json,
such that they can be easily consumed by other apps or libs. More on that later.

// example of importing from another workspace library
import { Button } from '@acme/ui'
...

As a result, consuming libraries is very straightforward, and similar to what
you might already be accustomed to in your current setup, where you structure
code within folders of your React application project. Having a dedicated library
project is a much stronger boundary compared to just separating code into
folders, though. Each Nx library has a so-called “public API”, represented by
a index.ts barrel file. This forces developers into an “API thinking” of what
should be exposed and thus be made available for others to consume, and what
on the others side should remain private within the library itself.

80% of the logic should reside in libraries, 20% in apps.

Chapter 2: Libraries 22

A common mental model is to see the application as “containers” that link,
bundle and compile functionality implemented in libraries for being deployed.
As such, if we follow a 80/20 approach: place 80% of your logic into the libs/
folder, and 20% into apps/.

Note, these libraries don’t necessarily need to be built separately, but are
rather consumed and built by the application itself directly. Hence, nothing
changes from a pure deployment point of view. That said, it is totally possible
to create so-called “buildable libraries” for enabling incremental builds8 as
well as “publishable libraries” for those scenarios where not only you want to
use a specific library within the current Nx workspace, but also to publish it
to some package repository (e.g NPM). You can read more about buildable and
publishable libraries on the official Nx docs9.

Organizing Libraries

Developers new to Nx are initially often hesitant to move their logic into
libraries, because they assume it implies that those libraries need to be general
purpose and shareable across applications. This is a common misconception.
Moving code into libraries can be done from a pure code organization perspec-
tive.

Ease of re-use might emerge as a positive side-effect of refactoring code
into libraries by applying an “API thinking” approach. It is not the main
driver though.

In fact when organizing libraries you should think about your business domains.
Most often teams are aligned with those domains and thus a similar organiza-
tion of the libraries in the libs folder might be most appropriate. Nx allows to
nest libraries into sub-folders which makes it easy to reflect such structuring.

8https://nx.dev/ci/incremental-builds
9https://nx.dev/structure/buildable-and-publishable-libraries

https://nx.dev/ci/incremental-builds
https://nx.dev/structure/buildable-and-publishable-libraries

Chapter 2: Libraries 23

.
├── (...)
├── libs
│ └── books
│ │ └── feature
│ │ │ ├── src
│ │ │ ├── ...
│ │ │ └── ...
│ │ └── ui
│ │ ├── src
│ │ ├── ...
│ │ └── ...
│ └── ui
│ ├── src
│ ├── ...
│ └── ...
└── (...)

Note how wemight have a libs/books/feature and libs/books/ui library, both
of which are specific libraries for the books domain, while libs/ui represents
a more general purpose library of UI elements such as a common UI design
system that can be used across all of the other domains. Applying such a nested
structure can be powerful to organize your workspace as well as for applying
code ownership rules as we’ll see later.

Categories of libraries

In a workspace, libraries are typically divided into four different types:

Feature
Libraries that implement “smart” UI (e.g. is effectful, is connected to data
sources, handles routing, etc.) for specific business use cases.

UI Libraries that contain only presentational components. That is, compo-
nents that render purely fromtheir props, and calls functionhandlerswhen
interaction occurs.

Chapter 2: Libraries 24

Data-access
Libraries that contain themeans for interactingwith external data services;
external services are typically backend services.

Utility
Libraries that contain common utilities that are shared by many projects.

Why do wemake these distinctions between libraries? Good question! It is good
to set boundaries for what a library should and should not do. This demarcation
makes it easier to understand the capabilities of each library, and how they
interact with each other.

More concretely, we can form rules about what each types of libraries can
depend on. For example, UI libraries cannot use feature or data-access libraries,
because doing so will mean that they are effectful.

We’ll see in later in this chapter how we can use Nx to strictly enforce these
boundaries.

The generate command

The nx generate or the nx g command, as it is aliased, allows us to use Nx
generator to create new applications, components, libraries, and more, to our
workspace.

Feature libraries

Let’s create our first feature library: books.

nx g lib feature \
--directory books \
--appProject bookstore \
--tags type:feature,scope:books

Chapter 2: Libraries 25

The --directory option allows us to group our libraries by nesting them under
their parentdirectory. In this case the library is created in the libs/books/feature
folder. It is aliased to -d.

The --appProject option lets Nx know that we want to make our feature library
to be routable inside the specified application. This option is useful because Nx
will do three things for us.

The --tags option lets us annotate our applications and libraries to express
constraints within the workspace. The tags are added to project.json, and
we’ll see at the end of this chapter how they can be used to enforce different
constraints.

1. Update apps/bookstore/src/app/app.tsx with the new route.

2. Update apps/bookstore/src/main.tsx to add BrowserRouter if it does not
exist yet.

3. Add react-router-dom and related dependencies to the workspace, if neces-
sary.

Pro-tip: You can pass the --dryRun option to generate to see the effects
of the command before committing to disk.

Once the command completes, you should see the new directory.

.
├── (...)
├── libs
│ └── books
│ └── feature
│ ├── src
│ │ ├── index.ts
│ │ └── lib
│ ├── jest.config.js
│ ├── project.json
│ ├── README.md

https://reacttraining.com/react-router/web/guides/quick-start

Chapter 2: Libraries 26

│ ├── tsconfig.json
│ ├── tsconfig.lib.json
│ └── tsconfig.spec.json
└── (...)

Nxgenerated our librarywith somedefault code aswell as scaffolding for linting
(ESLint) and testing (Jest). You can run them with:

nx lint books-feature
nx test books-feature

You’ll also see that the App component for bookstore has been updated to
include the new route.

import styled from 'styled-components';

import { Route, Link } from 'react-router-dom';

import { BooksFeature } from '@acme/books/feature';
const StyledApp = styled.div``;
export const App = () => {

return (
<StyledApp>
<header>

<h1>Bookstore</h1>
</header>

{/* START: routes */}
{/* These routes and navigation have been generated for you */}
{/* Feel free to move and update them to fit your needs */}

<hr />

<div role="navigation">

<Link to="/">Home</Link>

Chapter 2: Libraries 27

<Link to="/feature">BooksFeature</Link>

<Link to="/page-2">Page 2</Link>

</div>
<Route

path="/"
exact
render={() => (

<div>
This is the generated root route.{' '}
<Link to="/page-2">Click here for page 2.</Link>

</div>
)}

/>
<Route path="/feature" component={BooksFeature} />
<Route

path="/page-2"
exact
render={() => (

<div>
<Link to="/">Click here to go back to root page.</Link>

</div>
)}

/>
{/* END: routes */}

</StyledApp>
);

};
export default App;

Additionally, the main.tsx file for bookstore has also been updated to render
<BrowserRouter />. This render is needed in order for <Route /> components to
work, and Nx will handle the file update for us if necessary.

Chapter 2: Libraries 28

import { StrictMode } from 'react';
import * as ReactDOM from 'react-dom';

import App from './app/app';

import { BrowserRouter } from 'react-router-dom';

ReactDOM.render(
<StrictMode>

<BrowserRouter>
<App />

</BrowserRouter>
</StrictMode>,

document.getElementById('root')
);

Restart the development server again (nx serve bookstore), and you should see
the updated application.

Be aware when you add a new project to the workspace, you must
restart your development server. This restart is necessary in order
for the TypeScript compiler to pick up new library paths, such as
@acme/books/feature.

By using a monorepo, we’ve skipped a few steps that are usually required when
creating a new library.

• Setting up the repo

• Setting up the CI

• Setting up the publishing pipeline–such as artifactory

And nowwe have our library!Wasn’t that easy? Something thatmay have taken
minutes or hours–sometimes even days–now takes only takes a few seconds.

Chapter 2: Libraries 29

But to our despair, when we navigate to http://localhost:4200 again, we see a
poorly styled application.

Let’s remedy this situation by adding a component library that will provide
better styling.

UI libraries

Let’s create the UI library.

http://localhost:4200

Chapter 2: Libraries 30

nx g lib ui \
--tags type:ui,scope:books \
--no-interactive

The --no-interactive tells Nx to not prompt us with options, but instead use
the default values.

Pleasenote thatwewillmakeheavyuse of styled-components in this com-
ponent library. Don’t fret if you’re not familiar with styled-components.
If you know CSS then you should not have a problem understanding this
section. To learn more about styled-components you can check our their
documentation.

You should have a new folder: libs/ui.

acme
├── (...)
├── libs
│ ├── (...)
│ ├── ui
│ │ ├── src
│ │ │ ├── lib
│ │ │ └── index.ts
│ │ ├── .eslintrc
│ │ ├── jest.config.js
│ │ ├── README.md
│ │ ├── tsconfig.app.json
│ │ ├── tsconfig.json
│ │ └── tsconfig.spec.json
└── (...)

This library isn’t quite useful yet, so let’s add in some components.

https://www.styled-components.com/
https://www.styled-components.com/docs/basics

Chapter 2: Libraries 31

nx g component GlobalStyles --project ui --export --tags type:ui,scope:books
nx g component Button --project ui --export --tags type:ui,scope:books
nx g component Header --project ui --export --tags type:ui,scope:books
nx g component Main --project ui --export --tags type:ui,scope:books
nx g component NavigationList --project ui --export --tags type:ui,scope:books
nx g component NavigationItem --project ui --export --tags type:ui,scope:books

The --project option specifies which project (as found in the projects section
of workspace.json) to add the new component to. It is aliased to -p.

The --export option tells Nx to export the new component in the index.ts file
of the project so that it can be imported elsewhere in the workspace. You may
leave this option off if you are generating private/internal components. It is
aliased to -e.

If you do forget the --export option you can always manually add the export
barrel to index.ts.

Pro-tip: There are additional options and aliases available to the nx g
component command. To see a list of options run nx g component --help.
Also, check out nx g lib --help and nx g app --help!

Next, let’s go over the implementation of each of the components and what
their purposes are.

GlobalStyles

This component injects a global stylesheet into our application when used. It is
particularly useful for overriding global style rules such as body { margin: 0 }.

libs/ui/src/lib/global-styles/global-styles.tsx

Chapter 2: Libraries 32

import { createGlobalStyle } from 'styled-components';

export const GlobalStyles = createGlobalStyle`
body {

margin: 0;
font-size: 16px;
font-family: sans-serif;

}

* {
box-sizing: border-box;

}
`;

export default GlobalStyles;

Button

This component is pretty self-explanatory. It renders a styled button andpasses
through other props to the actual <button>.

libs/ui/src/lib/button/button.tsx

import { ButtonHTMLAttributes } from 'react';
import styled from 'styled-components';

const StyledButton = styled.button`
font-size: 0.8rem;
padding: 0.5rem;
border: 1px solid #ccc;
background-color: #fafafa;
border-radius: 4px;

&:hover {
background-color: #80a8e2;
border-color: #0e2147;

}

Chapter 2: Libraries 33

`;

export const Button = ({
children,
...rest

}: ButtonHTMLAttributes<HTMLButtonElement>) => {
return <StyledButton {...rest}>{children}</StyledButton>;

};

export default Button;

Header and Main

These two components are used for layout. The header component forms the
top header bar, while the main component takes up the rest of the page.

libs/ui/src/lib/header/header.tsx

import { HTMLAttributes } from 'react';
import styled from 'styled-components';

const StyledHeader = styled.header`
padding: 1rem;
background-color: #2657ba;
color: white;
display: flex;
align-items: center;

a {
color: white;
text-decoration: none;

&:hover {
text-decoration: underline;

}
}

Chapter 2: Libraries 34

> h1 {
margin: 0 1rem 0 0;
padding-right: 1rem;
border-right: 1px solid white;

}
`;

export const Header = (props: HTMLAttributes<HTMLElement>) => (
<StyledHeader>{props.children}</StyledHeader>

);

export default Header;

libs/ui/src/lib/main/main.tsx

import { HTMLAttributes } from 'react';
import styled from 'styled-components';

const StyledMain = styled.main`
padding: 0 1rem;
width: 100%;
max-width: 960px;

`;

export const Main = (props: HTMLAttributes<HTMLElement>) => (
<StyledMain>{props.children}</StyledMain>

);

export default Main;

NavigationList and NavigationItem

And finally, the NavigationList and NavigationItem componentswill render the
navigation bar inside our top Header component.

libs/ui/src/lib/navigation-list/navigation-list.tsx

Chapter 2: Libraries 35

import { HTMLAttributes } from 'react';
import styled from 'styled-components';

const StyledNavigationList = styled.div`
ul {

display: flex;
margin: 0;
padding: 0;
list-style: none;

}
`;

export const NavigationList = (props: HTMLAttributes<HTMLElement>) => {
return (

<StyledNavigationList role="navigation">
{props.children}

</StyledNavigationList>
);

};

export default NavigationList;

libs/ui/src/lib/navigation-item/navigation-item.tsx

import { LiHTMLAttributes } from 'react';
import styled from 'styled-components';

const StyledNavigationItem = styled.li`
margin-right: 1rem;

`;

export const NavigationItem = (props: LiHTMLAttributes<HTMLLIElement>) => {
return <StyledNavigationItem>{props.children}</StyledNavigationItem>;

};

export default NavigationItem;

Chapter 2: Libraries 36

Using the UI library

Now we can use the new library in our bookstore’s app component.

apps/bookstore/src/app/app.tsx

import { Link, Redirect, Route } from 'react-router-dom';

import { BooksFeature } from '@acme/books/feature';

// importing the UI library into our App
import {

GlobalStyles,
Header,
Main,
NavigationItem,
NavigationList

} from '@acme/ui';

export const App = () => {
return (

<>
<GlobalStyles />
<Header>

<h1>Bookstore</h1>
<NavigationList>

<NavigationItem>
<Link to="/books">Books</Link>

</NavigationItem>
</NavigationList>

</Header>
<Main>

<Route path="/books" component={BooksFeature} />
<Route exact path="/" render={() => <Redirect to="/books" />} />

</Main>
</>

);
};

Chapter 2: Libraries 37

export default App;

Finally, let’s restart our server (nx serve bookstore) and we will see a much
improved UI.

We’ll save our progress with a new commit.

git add .
git commit -m 'add books feature and ui components'

That’s great, but we are still not seeing any books, so let’s do something about
this.

Chapter 2: Libraries 38

Data-access libraries

What we want to do is fetch data from somewhere and display that in our books
feature. Since we will be calling a backend service we should create a new data-
access library.

nx g @nrwl/web:lib data-access --directory books --tags type:data-access,scop\
e:books

You may have noticed that we are using a prefix @nrwl/web:lib instead of
just lib like in our previous examples. This @nrwl/web:lib syntax means that
we want Nx to run the lib (or library) generator provided by the @nrwl/web
collection.

We were able to go without this prefix previously because the nx.json configu-
ration has set @nrwl/react as the default option.

{
// ...
"cli": {

"defaultCollection": "@nrwl/react"
},
// ...

}

In this case, the @nrwl/web:lib generator will create a library to be used in a
web (i.e. browser) context without assuming the framework used. In contrast,
when using @nrwl/react:lib, it assumes that you want to generate a default
component as well as potentially setting up routes.

Pro-tip: A collection in Nx contains a set of generators and executors. Gen-
erators can be invoked using the generate command. Executors perform
actions on your code, including build, lint, and test and are invoked by
issuing commands to Nx–such as nx lint and nx test. Use nx list
[collection] to list everything provided by the collection–e.g. nx list
@nrwl/react.

Chapter 2: Libraries 39

Back to the example. Let’s modify the library to export a getBooks function to
load our list of books.

libs/books/data-access/src/lib/books-data-access.ts

export async function getBooks() {
// TODO: We'll wire this up to an actual API later.
// For now we are just returning some fixtures.
return [

{
id: 1,
title: 'The Picture of Dorian Gray',
author: 'Oscar Wilde',
rating: 3,
price: 9.99

},
{
id: 2,
title: 'Frankenstein',
author: 'Mary Wollstonecraft Shelley',
rating: 5,
price: 7.95

},
{
id: 3,
title: 'Jane Eyre',
author: 'Charlotte Brontë',
rating: 4,
price: 10.95

},
{
id: 4,
title: 'Dracula',
author: 'Bram Stoker',
rating: 5,
price: 14.99

},
{
id: 5,

Chapter 2: Libraries 40

title: 'Pride and Prejudice',
rating: 4,
author: 'Jane Austen',
price: 12.85

}
];

}

Using the data-access library

The next step is to use the getBooks function within our books feature. We can
do this with React’s useEffect and useState hooks.

libs/books/feature/src/lib/books-feature.tsx

import { useEffect, useState } from 'react';
import styled from 'styled-components';
import { getBooks } from '@acme/books/data-access';
import { Books } from '@acme/books/ui';

export const BooksFeature = () => {
const [books, setBooks] = useState<any[]>([]);

useEffect(() => {
getBooks().then(setBooks);

}, [
// This effect runs only once on first component render
// so we declare it as having no dependent state.

]);

return (
<>
<h2>Books</h2>
<Books books={books} />

</>
);

};

Chapter 2: Libraries 41

export default BooksFeature;

You’ll notice that we’re using two new components: Books and Book. They can
be created as follows.

nx g lib ui --directory books
nx g component Books --project books-ui --export
nx g component Book --project books-ui --export

We generally want to put presentational components into their own UI library.
This will prevent side-effects from bleeding into them, thus making them
easier to understand and test.

Note howwe generate a new books-ui library under libs/books/ui rather
than using the already existing ui library under libs/ui. The reason
is that the former contains specific presentational components for the
books feature of our workspace, while the latter contains the general pur-
pose UI components that form our corporate design system components.

Again, we will see later in this chapter how Nx enforces module boundaries.

libs/books/ui/src/lib/books/books.tsx

import styled from 'styled-components';
import { Book } from '../book/book';

export interface BooksProps {
books: any[];

}

const StyledBooks = styled.div`
border: 1px solid #ccc;
border-radius: 4px;

`;

export const Books = ({ books }: BooksProps) => {

Chapter 2: Libraries 42

return (
<StyledBooks>
{books.map(book => (

<Book key={book.id} book={book} />
))}

</StyledBooks>
);

};

export default Books;

libs/books/ui/src/lib/book/book.tsx

import styled from 'styled-components';
import { Button } from '@acme/ui';

export interface BookProps {
book: any;

}

const StyledBook = styled.div`
display: flex;
align-items: center;
border-bottom: 1px solid #ccc;
&:last-child {

border-bottom: none;
}
> span {

padding: 1rem 0.5rem;
margin-right: 0.5rem;

}
.title {

flex: 1;
}
.price {

color: #478d3c;
}

`;

Chapter 2: Libraries 43

export const Book = ({ book }: BookProps) => {
return (

<StyledBook>

{book.title} by {book.author}

${book.price}

</StyledBook>
);

};

export default Book;

Restart the server to check out our feature in action.

Chapter 2: Libraries 44

That’s great and all, but you may have observed a couple of problems.

1. The getBooks data-access function is a stub and doesn’t actually call out to
a backend service.

2. We’ve been using any typeswhen dealingwith books data. For example, the
return type of getBooks is any[] andour BookProp takes specifies { book: any
}. This makes our code unsafe and can lead to production bugs.

We’ll address both problems in the next chapter. For now, let’s wrap up by
examining how Nx can enforce module boundaries between different types of
libraries that we’ve created in this chapter.

Chapter 2: Libraries 45

Enforcing module boundaries

Recall that earlier, whenwe generated our libraries we passed the --tags option
to define a type and scope for each of them. Let’s examine how we can use these
tags to define and enforce clean separation of concerns within the workspace.

Open up the .eslintrc.json file at the root of your workspace. It will contain an
entry for @nrwl/nx/enforce-module-boundaries as follows.

"@nrwl/nx/enforce-module-boundaries": [
"error",
{

"depConstraints": [
{

"sourceTag": "*",
"onlyDependOnLibsWithTags": ["*"]

}
],
"allow": [],
"enforceBuildableLibDependency": true

}
]

The depConstraints section is the one you will be spendingmost time fine-tun-
ing. It is anarrayof constraints, each consistingof sourceTag and onlyDependOnLibsWithTags
properties. The default configuration has a wildcard * set as a value for both of
them, meaning that any project can import (depend on) any other project.

The circular dependency chains such as lib A -> lib B -> lib C -> lib A are
also not allowed. The self circular dependency (when lib imports from a named
alias of itself), while not recommended, can be overridden by setting the flag
allowCircularSelfDependency to true.

Chapter 2: Libraries 46

"@nrwl/nx/enforce-module-boundaries": [
"error",
{
"allowCircularSelfDependency": true,
...

}
]

The allow array is a whitelist listing the import definitions that should be
omitted from further checks. We will see how overrides work after we define
the depConstraints section.

Finally, the flag enforceBuildableLibDependency prevents us from importing a
non-buildable library into a buildable one.

Using tags to enforce boundaries

Earlier in this chapter we presented four categories of libraries we typically find
in a Nx workspace.

1. Feature

2. UI

3. Data-access

4. Utility

We’ve already added these types as tags to our libraries when we ran the
generate command (e.g. --tags type:ui). We also want to consider a fifth type
of project in theworkspace: type:app thatwe can tag all of our applicationswith.

Now, let’s define some constraints for what each types of projects can depend
on.

• Applications can depend on any types of libraries, but not other applica-
tions.

Chapter 2: Libraries 47

• Feature libraries can depend on any other library.

• UI libraries can only depend on other UI or utility libraries.

• Utility libraries can only depend on other utility libraries.

Let’s see howwe can configure the ESLint rule to enforce the above constraints.

"@nrwl/nx/enforce-module-boundaries": [
"error",
{

...
"depConstraints": [
{

"sourceTag": "type:app",
"onlyDependOnLibsWithTags": ["type:feature", "type:ui", "type:util"]

},
{
"sourceTag": "type:feature",
"onlyDependOnLibsWithTags": ["type:feature", "type:ui", "type:util"]

},
{
"sourceTag": "type:ui",
"onlyDependOnLibsWithTags": ["type:ui", "type:util"]

},
{

"sourceTag": "type:util",
"onlyDependOnLibsWithTags": ["type:util"]

}
]

}
]

Further, recall that we also have a second dimension to the tags of our libraries
(e.g. --tag scope:books). The scope tag allows us to separate our applications
and libraries into logical domains.

Imagine that we want to add an admin application to our workspace in order
to manage our books. We can create such application with nx g app admin

Chapter 2: Libraries 48

--tags type:app,scope:admin. It is likely that therewill be some shared libraries
required by both admin and books applications.

For example, if we have common components–such as buttons, modals, etc.–
then we can generate a shared library as follows.

nx g lib ui --directory shared --tags type:ui,scope:shared

And we want to enforce the following rules for scopes.

• Book application and libraries can only depend on scope:books libraries.

• Admin application and libraries can only depend on scope:admin libraries.

• Any applications and libraries can depend on scope:shared libraries.

This is how we would define the constraints.

"@nrwl/nx/enforce-module-boundaries": [
"error",
{

...
"depConstraints": [
{

"sourceTag": "type:app",
"onlyDependOnLibsWithTags": ["type:feature", "type:ui", "type:util"]

},
...
{

"sourceTag": "scope:books",
"onlyDependOnLibsWithTags": ["scope:shared", "scope:books"]

},
{

"sourceTag": "scope:admin",
"onlyDependOnLibsWithTags": ["scope:shared", "scope:admin"]

},
{

"sourceTag": "scope:shared",

Chapter 2: Libraries 49

"onlyDependOnLibsWithTags": ["scope:shared"]
}

]
}

]

By forbidding cross-scope dependencies we can prevent a feature from admin
being used in the books application. Also, domain-specific logic can be safely
guarded against being used in the wrong domains.

Thesemoduleboundaries areneededas theworkspace grows, otherwiseprojects
will become unmanageable, and changes will be hard to reason about. You can
customize the tags however you want. If you have a multi-platformmonorepo,
youmight add platform:web, platform:node, platform:native, and platform:all
tags.

Learn more about configuring boundaries with the Taming Code Organization
with Module Boundaries in Nx article10.

Finally, let’s commit our changes up to this point before moving on to the next
chapter.

git add .
git commit -m 'implement books feature and link to application'

10https://blog.nrwl.io/mastering-the-project-boundaries-in-nx-f095852f5bf4

Chapter 2: Libraries 50

Key points

There are four type of libraries: feature, UI, data-access, and util.

Nx provides us with the nx generate or nx g command to quickly create
new libraries from scratch.

When running nx g we can optionally provide a collection such as
@nrwl/web:lib as opposed to lib. This will tell Nx to use the generator
from that specific collection rather than the default as set in nx.json.

Nx enforces module boundaries through tags and
@nrwl/nx/enforce-module-boundaries ESLint rule. The boundaries
allow us to better organize and manage our workspace.

Chapter 3: Working effectively in a
monorepo
In the previous two chapters we set up a bookstore application that renders a
list of books for users to purchase.

In this chapter we explore how Nx enables us to work more effectively.

The dependency graph

As we’ve seen in Chapter 1, Nx automatically generates the dependency graph
for us. So why don’t we see how it looks now?

nx dep-graph

Chapter 3: Working effectively in a monorepo 52

Dependency graph of the workspace

Nx knows the dependency graph of the workspace without us having to config-
ure anything. Because of this ability, Nx also understandswhich projects within
the workspace are affected by any given changeset. Moreover, it can help us
verify the correctness of the affected projects.

Note that you can also manually add so-called “implicit dependencies”
for those rare cases where there needs to be a dependency which can not
be automatically inferred from source code. Read more about that here:
https://nx.dev/configuration/projectjson#implicitdependencies

Chapter 3: Working effectively in a monorepo 53

Only recompute affected projects

Let’s say we want to add a checkout button to each of the books in the list.

We can update our Book, Books, and BooksFeature components to pass along a
new onAdd callback prop.

libs/books/ui/src/lib/book/book.tsx

import styled from 'styled-components';
import { Button } from '@acme/ui';

export interface BookProps {
book: any;
// New prop
onAdd: (book: any) => void;

}

const StyledBook = styled.div`
display: flex;
align-items: center;
border-bottom: 1px solid #ccc;
&:last-child {

border-bottom: none;
}
> span {

padding: 1rem 0.5rem;
margin-right: 0.5rem;

}
.title {

flex: 1;
}
.rating {

color: #999;
}
.price {

color: #478d3c;
}

Chapter 3: Working effectively in a monorepo 54

`;

export const Book = ({ book, onAdd }: BookProps) => {
const handleAdd = () => onAdd(book);
return (

<StyledBook>

{book.title} by {book.author}

{book.rating}
${book.price}
{/* Add button to UI */}

<Button onClick={handleAdd}>Add to Cart</Button>

</StyledBook>
);

};

export default Book;

libs/books/ui/src/lib/books/books.tsx

import styled from 'styled-components';
import { Book } from '../book/book';

export interface BooksProps {
books: any[];

// New prop
onAdd: (book: any) => void;

}

const StyledBooks = styled.div`
border: 1px solid #ccc;
border-radius: 4px;

`;

export const Books = ({ books, onAdd }: BooksProps) => {
return (

Chapter 3: Working effectively in a monorepo 55

<StyledBooks>
{books.map(book => (

// Pass down new callback prop
<Book key={book.id} book={book} onAdd={onAdd} />

))}
</StyledBooks>

);
};

export default Books;

libs/books/feature/src/lib/books-feature.tsx

import { useEffect, useState } from 'react';
import styled from 'styled-components';
import { getBooks } from '@acme/books/data-access';
import { Books, Book } from '@acme/books/ui';

export const BooksFeature = () => {
const [books, setBooks] = useState<any[]>([]);

useEffect(() => {
getBooks().then(setBooks);

}, [
// This effect runs only once on first component render
// so we declare it as having no dependent state.

]);

return (
<>
<h2>Books</h2>
{/* Pass a stub callback for now */}
{/* We'll implement this properly in Chapter 4 */}
<Books books={books} onAdd={book => alert(`Added ${book.title}`)} />

</>
);

};

export default BooksFeature;

Chapter 3: Working effectively in a monorepo 56

By leveraging the dependency graph, Nx is not only able to understand how the
workspace projects relate to each other, but combining this with the Git history,
Nx is able to determine which projects were affected by a given changeset.

We can ask Nx to show us how this change affects the projects within our
workspace using the so-called “affected command”.

nx affected:dep-graph

Affected dependencies

As we can see, Nx knows that the books-ui library has changed starting from
the Git main branch. Using this information, Nxwalks up the dependency graph
and highlights all the dependent projects affected by this change in red.

Chapter 3: Working effectively in a monorepo 57

But there is more. We can not only just visualize this change, but we can use
various commands to run only against this affected set of projects. Hence, we
can just re-test, re-lint or re-build what changed.

// build only the affected apps
nx affected:build

// run unit tests on affected projects
nx affected:test

// run linting on affected projects
nx affected:lint

// run e2e tests on affected projects
nx affected:e2e

Nx topologically sorts the projects such that they are run from bottom to top.
That is, projects at the bottom of the dependency chain run first. All these tasks
are also parallelized by default (you can customize the amount of parallel tasks
using --maxParallel).

Nx uses 3 parallel tasks by default. You can customize the amount using
the --maxParallel flag.

All of the affected:* commands use the Git history, comparing the current
HEAD with a “base” to determine which Nx project(s) got changed. By default
“base” refers to the main branch. You can customize that by either passing the
--base flag to the command or by changing the defaultBase property in nx.json.

Note that in these projects, Nx is using Jest and Cypress to run unit and e2e
tests respectively. They make writing and running tests are fast and simple as
possible. If you’re not familiar with them, please read their documentation to
learn more.

It is possible to use different executors by specifying them in the project’s

https://jestjs.io/
https://www.cypress.io/

Chapter 3: Working effectively in a monorepo 58

project.json configuration file.

So far we haven’t been diligent about verifying that our changes are okay, so
unsurprisingly our tests are failing.

I’ll leave it to you as an exercise to fix the broken unit and e2e tests. A hint
for the App component test, you should look into the MemoryRouter from React
Router.

Pro-Tip: You can run a target for an individual project by issuing nx
[target] [project] such as nx test books-ui, nx test bookstore, or
nx e2e bookstore-e2e. Youmay also pass the --watch flag to re-run tests
as soon there is a code change.

For the full solutionplease see thebookstore example repository: https://github.com/jaysoo/nx-
react-book-example.

There are some additional affected commands in Nx.

1. nx affected:apps - Lists out all applications affected by the changeset.

2. nx affected:libs - Lists out all libraries affected by the changeset.

The listing of affected applications and libraries can be useful in CI to trigger
downstream jobs based on the output.

Computation Caching

Whenyouheavily adopt amonorepoand thenumber of projects grows, youneed
to start thinking about scaling. We have already seen how Nx can cut down the
amount of projects to recompute drastically by using the previously mentioned
“affected” commands.

Chapter 3: Working effectively in a monorepo 59

Nx goes a step further by also using a computation cache. Basically before
running any task, Nx calculates its computation hash. As long as the hash is
the same, the output of running the task will be the same.

Let’s take the example of running a unit test for an application app1. By default
the computation hash includes

• All the source files of app1 and its dependencies

• Relevant global configuration

• Versions of external dependencies

• Runtime values provisioned by the user such as the version of Node

• CLI Command flags

Calculating the computation cache

Chapter 3: Working effectively in a monorepo 60

While this is the default behavior, it can also be customized to more specific
needs. For instance, lint checks may only depend on the source code of the
project and global configs. Or similarly, builds may depend on the dts files of
the compiled libs instead of their source.

Once Nx has the computation hash, it verifies whether that specific hash
already exists in its cache. If it does, it replays the task’s output in the terminal
and restores all possible files in the right folders. Fromadevelopers perspective
it looks like the task was just run, simply a lot faster.

Try it out by yourself by running unit tests for the books-feature project. Run it
once and then again to see it being restored from the cache the 2nd time.

// run unit tests
nx test books-feature

// run them again, they should be restored from the cache
nx test books-feature

Every Nx workspace has the computation caching enabled by default. Nx stores
the cache locally in the node_modules/.cache/nx folder. You can customize
which operations get cached as well as the exact location of the cache folder
in the nx.json file under the taskRunnerOptions field.

{
...
"tasksRunnerOptions": {

"default": {
"runner": "@nrwl/workspace/tasks-runners/default",
"options": {

"cacheableOperations": ["build", "lint", "test", "e2e"]
}

}
},

}

You can get even more benefits if this cache is not only local, but remotely
distributed. Such functionality can be enabled by using Nx Cloud11.

11https://nx.app

https://nx.app

Chapter 3: Working effectively in a monorepo 61

Remote caching with Nx Cloud

If Nx Cloud is enabled, the local cache folder will be synced with a cloud-hosted,
remote counterpart.With the remote cache, other teammembers and CI agents
can read from it too anddrastically reduce the required computation time. Learn
more on https://nx.app and the corresponding Nx Cloud docs at https://nx.app/
docs.

Adding the API application

It’s time to get more practical again and commit your changes if you haven’t
done so already: git add . ; git commit -m 'added checkout button'.

So far our bookstore application does not communicate with a real backend
service. Let’s create one using the Express framework.

We’ll need to install the @nrwl/express collection first.

https://nx.app
https://nx.app/docs
https://nx.app/docs
https://expressjs.com/

Chapter 3: Working effectively in a monorepo 62

npm install --save-dev @nrwl/express

Then we can do a dry run of the express app generator.

nx g @nrwl/express:app api \
--no-interactive \
--frontend-project=bookstore \
--dryRun

Preview of the file changes

Everything looks good so let’s run it for real.

Chapter 3: Working effectively in a monorepo 63

nx g @nrwl/express:app api \
--no-interactive \
--frontend-project=bookstore

The --frontend-project option will add a proxy configuration to the bookstore
application such that requests going to /api/* will be forwarded to the API

Just like our frontend application, we can use Nx to serve the API.

nx serve api

When we open up http://localhost:3333/api we’ll be greeted by a friendly
message.

{ "message": "Welcome to api!" }

Next, let’s implement the /api/books endpoint so that we can use it in our
books-data-access library.

apps/api/src/main.ts

import * as express from 'express';

const app = express();

app.get('/api', (req, res) => {
res.send({ message: 'Welcome to api!' });

});

app.get('/api/books', (req, res) => {
const books: any[] = [
{
id: 1,
title: 'The Picture of Dorian Gray ',
author: 'Oscar Wilde',
rating: 5,
price: 9.99

Chapter 3: Working effectively in a monorepo 64

},
{
id: 2,
title: 'Frankenstein',
author: 'Mary Wollstonecraft Shelley',
rating: 4,
price: 7.95

},
{
id: 3,
title: 'Jane Eyre',
author: 'Charlotte Brontë',
rating: 4.5,
price: 10.95

},
{
id: 4,
title: 'Dracula',
author: 'Bram Stoker',
rating: 4,
price: 14.99

},
{
id: 5,
title: 'Pride and Prejudice',
author: 'Jane Austen',
rating: 4.5,
price: 12.85

}
];
res.send(books);

});

const port = process.env.port || 3333;
const server = app.listen(port, () => {

console.log(`Listening at http://localhost:${port}/api`);
});
server.on('error', console.error);

Chapter 3: Working effectively in a monorepo 65

Let’s update our data-access library to call the proxy endpoint.

libs/books/data-access/src/lib/books-data-access.ts

export async function getBooks() {
const data = await fetch('/api/books', {

headers: {
'Content-Type': 'application/json'

}
});
return data.json();

}

If we restart both applications (nx serve api and nx serve bookstore; or in a
single command nx run-many --target=serve --projects=api,bookstore) we’ll
see that our bookstore is still working in the browser. Moreover, we can verify
that our /api/books endpoint is indeed being called.

http://localhost:4200/

Chapter 3: Working effectively in a monorepo 66

Let’s commit our changes: git add . ; git commit -am 'added api app'.

Sharing models between frontend and backend

Recall that we previously used the any type when working with books data. This
is bad practice as it may lead to uncaught type errors in production.

A better idea would be to create a utility library containing some sharedmodels
to be used by both the frontend and backend.

nx g @nrwl/node:lib shared-models --no-interactive

libs/shared-models/src/lib/shared-models.ts

Chapter 3: Working effectively in a monorepo 67

export interface IBook {
id: number;
title: string;
author: string;
rating: number;
price: number;

}

And now we can update the following five files to use the newmodel:

apps/api/src/main.ts

import { IBook } from '@acme/shared-models';
// ...

app.get('/api/books', (req, res) => {
const books: IBook[] = [

// ...
];
res.send(books);

});

// ...

libs/books/data-access/src/lib/books-data-access.ts

import { IBook } from '@acme/shared-models';

// Add correct type for the return value
export async function getBooks(): Promise<IBook[]> {

const data = await fetch('http://localhost:3333/api/books');
return data.json();

}

libs/books/feature/src/lib/books-feature.tsx

Chapter 3: Working effectively in a monorepo 68

...
import { IBook } from '@acme/shared-models';

export const BooksFeature = () => {
// Properly type the array
const [books, setBooks] = useState<IBook[]>([]);

// ...

return (
<>
<h2>Books</h2>
<Books books={books} onAdd={book => alert(`Added ${book.title}`)} />

</>
);

};

export default BooksFeature;

libs/books/ui/src/lib/books/books.tsx

// ...
import { IBook } from '@acme/shared-models';

// Replace any with IBook
export interface BooksProps {

books: IBook[];
onAdd: (book: IBook) => void;

}

// ...

export default Books;

libs/books/ui/src/lib/book/book.tsx

Chapter 3: Working effectively in a monorepo 69

// ...
import { IBook } from '@acme/shared-models';

// Replace any with IBook
export interface BookProps {

book: IBook;
onAdd: (book: IBook) => void;

}

// ...

export default Book;

Chapter 3: Working effectively in a monorepo 70

dependency graph with api and shared-models

By using Nx, we have created a shared model library and refactored both
frontend and backend code in about a minute.

Another major benefit of working within a monorepo is that we can check
in these changes as a single commit: git add . ; git commit -m 'add
shared models'. The corresponding pull-request with the commit will have the
full story, rather than being fragmented amongst multiple pull-requests and
repositories.

Chapter 3: Working effectively in a monorepo 71

Automatic code formatting

One of the easiest ways to waste time as a developer is on code style. We can
spend hours debating with one another on whether we should use semicolons
or not (you should); or whether we should use a comma-first style or not (you
should not).

Prettier was created to stop these endless debates over code style. It is highly
opinionated and provides minimal configuration options. Best of all, it can
format our code automatically. This means that we no longer need to manually
fix code to conform to the code style.

Nx workspaces come with Prettier installed from the get-go. With it, we can
check the formatting of the workspace, and format workspace code automati-
cally.

Checks for format conformance with Prettier.
Exits with error code when the check fails.
nx format:check

Formats files with Prettier.
nx format:write

Key points

Nx understands the dependency graph of projects within our workspace.

We can ask Nx to generate the dependency graph automatically, as well
as highlight the parts of the graph that are affected by a given changeset.

Nx can retest and rebuild only the affected projects within our workspace.

By using a monorepo, related changes in different projects can be in the
same changeset (i.e. pull-request), which gives us the full picture of the
changes.

Nx automatically formats our code for us in an opinionated way using
Prettier.

https://prettier.io/

Chapter 4: Bringing it all together
Thus far in this book we’ve seen how to generate and organize our React
application, libraries, and an Express application. In this chapter we will apply
what we’ve learned so far to implement the checkout feature. We will also
discuss how we can provide interaction between features through the use of
React context and reducer.

Checkout API and shared models

Let’s add the new shared models for our shopping cart.

libs/shared-models/src/lib/shared-models.ts

// ...

export interface ICartItem {
id: number;
description: string;
cost: number;

}

export interface ICart {
items: ICartItem[];

}

Next, we can add a checkout endpoint to the API application.

apps/api/src/main.ts

Chapter 4: Bringing it all together 73

import { IBook, ICart } from '@acme/shared-models';
// ...

app.post('/api/checkout', (req, res) => {
const cart: ICart = req.body;
console.log('Checking out...', JSON.stringify(cart, null, 2));
res.send({ order: '12345678' });

});

// ...

This endpoint doesn’t do anything except log and return a fake order number.
In a real world application you would interact with a database or perhaps a
microservice. Since this book is about React development, we will gloss over
the implementation details of this endpoint.

Cart data-access library

Now we can add our shopping cart data-access library to the frontend applica-
tion.

Remember that we want a generic web library for data-access
nx g @nrwl/web:lib data-access --directory=cart

The cart data-access library should provide a checkout function we can use in
our feature.

libs/cart/data-access/src/lib/cart-data-access.ts

Chapter 4: Bringing it all together 74

import { ICart } from '@acme/shared-models';

export async function checkout(cart: ICart): Promise<{ sucess: boolean }> {
const data = await fetch('/api/checkout', {
method: 'POST',
headers: {
'Content-Type': 'application/json',

},
body: JSON.stringify(cart),

});
return data.json();

}

Managing cart state using Redux Toolkit

The cart statewill containmultiple sub-values (cart items, status flag, etc.), and
we’ll also need to communicate with the API endpoint. To help usemanage this
complexity, we can take advantage of Redux Toolkit. Luckily, Nx comes with a
generator to help set this up.

nx g redux cart --project=cart-data-access --appProject=bookstore

Here, we are creating a new Redux slice cart in the cart-data-access library
thatwe created previously. Aswell, the generatorwill install the necessary npm
packages for Redux Toolkit, add configure the store in bookstore app, and add
the cart slice.

When the command completes, open up apps/bookstore/src/main.tsx and
you’ll see the following.

https://redux-toolkit.js.org/

Chapter 4: Bringing it all together 75

// ...
import { configureStore, getDefaultMiddleware } from '@reduxjs/toolkit';
import { Provider } from 'react-redux';

import { CART_FEATURE_KEY, cartReducer } from '@acme/cart/data-access';

const store = configureStore({
reducer: { [CART_FEATURE_KEY]: cartReducer },
// Additional middleware can be passed to this array
middleware: [...getDefaultMiddleware()],
devTools: process.env.NODE_ENV !== 'production',
// Optional Redux store enhancers
enhancers: [],

});

ReactDOM.render(
<Provider store={store}>

<React.StrictMode>
<BrowserRouter>

<App />
</BrowserRouter>

</React.StrictMode>
</Provider>,
document.getElementById('root')

);

Awesome, we didn’t have to anything to set up Redux in our application!

Next, let’s take a look at the slice itself.

libs/cart/data-access/src/lib/cart.slice.ts

Chapter 4: Bringing it all together 76

import {
createAsyncThunk,
createEntityAdapter,
createSelector,
createSlice,
EntityState,
PayloadAction,

} from '@reduxjs/toolkit';

export const CART_FEATURE_KEY = 'cart';

/*
* Update these interfaces according to your requirements.
*/
export interface CartEntity {

id: number;
}

export interface CartState extends EntityState<CartEntity> {
loadingStatus: 'not loaded' | 'loading' | 'loaded' | 'error';
error: string;

}

export const cartAdapter = createEntityAdapter<CartEntity>();

/**
* Export an effect using createAsyncThunk from
* the Redux Toolkit: https://redux-toolkit.js.org/api/createAsyncThunk
*
* e.g.
* \```
* import { useEffect } from 'react';
* import { useDispatch } from 'react-redux';
*
* // ...
*
* const dispatch = useDispatch();
* useEffect(() => {
* dispatch(fetchCart())

Chapter 4: Bringing it all together 77

* }, [dispatch]);
* \```
*/
export const fetchCart = createAsyncThunk(

'cart/fetchStatus',
async (_, thunkAPI) => {

/**
* Replace this with your custom fetch call.
* For example, `return myApi.getCarts()`;
* Right now we just return an empty array.
*/
return Promise.resolve([]);

}
);

export const initialCartState: CartState = cartAdapter.getInitialState({
loadingStatus: 'not loaded',
error: null,

});

export const cartSlice = createSlice({
name: CART_FEATURE_KEY,
initialState: initialCartState,
reducers: {

add: cartAdapter.addOne,
remove: cartAdapter.removeOne,
// ...

},
extraReducers: (builder) => {

builder
.addCase(fetchCart.pending, (state: CartState) => {
state.loadingStatus = 'loading';

})
.addCase(

fetchCart.fulfilled,
(state: CartState, action: PayloadAction<CartEntity[]>) => {

cartAdapter.setAll(state, action.payload);
state.loadingStatus = 'loaded';

}

Chapter 4: Bringing it all together 78

)
.addCase(fetchCart.rejected, (state: CartState, action) => {

state.loadingStatus = 'error';
state.error = action.error.message;

});
},

});

/*
* Export reducer for store configuration.
*/
export const cartReducer = cartSlice.reducer;

/*
* Export action creators to be dispatched. For use with the `useDispatch` ho\
ok.
*
* e.g.
* \```
* import { useEffect } from 'react';
* import { useDispatch } from 'react-redux';
*
* // ...
*
* const dispatch = useDispatch();
* useEffect(() => {
* dispatch(cartActions.add({ id: 1 }))
* }, [dispatch]);
* \```
*
* See: https://react-redux.js.org/next/api/hooks#usedispatch
*/
export const cartActions = cartSlice.actions;

/*
* Export selectors to query state. For use with the `useSelector` hook.
*
* e.g.
* \```

Chapter 4: Bringing it all together 79

* import { useSelector } from 'react-redux';
*
* // ...
*
* const entities = useSelector(selectAllCart);
* \```
*
* See: https://react-redux.js.org/next/api/hooks#useselector
*/
const { selectAll, selectEntities } = cartAdapter.getSelectors();

export const getCartState = (rootState: unknown): CartState =>
rootState[CART_FEATURE_KEY];

export const selectAllCart = createSelector(getCartState, selectAll);

export const selectCartEntities = createSelector(getCartState, selectEntities\
);

If you’re not familiar with Redux Toolkit, you’ll notice a few new utilities.

1. createEntityAdapter function returns a set of case reducers and selectors
that makes working with normalized entities much simpler.

2. createAsyncThunk function returns a thunk that allows us to handle async
dataflow.

3. createSlice function removesmuch of the boilerplate of Redux by allowing
us to define the actions and case reducers together.

4. The case reducers–either the reducermethods, or builder.addCase in extraReducers–
mutate the state rather than working with it immutably. Redux Toolkit
affords the ability to perform mutatable operations because it wraps the
reducer around immer.

The generated code is a great start for many use cases. We do need to make a
few tweaks, as well as add additional selectors. So let’s update the slice to the
following:

libs/cart/data-access/src/lib/cart.slice.ts

https://github.com/immerjs/immer

Chapter 4: Bringing it all together 80

import {
createAsyncThunk,
createEntityAdapter,
createSelector,
createSlice,
EntityState,

} from '@reduxjs/toolkit';
import { ICartItem } from '@acme/shared-models';
import { checkout } from './cart-data-access';

export const CART_FEATURE_KEY = 'cart';

export interface CartState extends EntityState<ICartItem> {
cartStatus: 'ready' | 'pending' | 'ordered' | 'error';
error: string;
order?: string;

}

export const cartAdapter = createEntityAdapter<ICartItem>();

export const checkoutCart = createAsyncThunk<{ order: string }, ICartItem[]>(
'cart/checkoutStatus',
(items) => checkout({ items })

);

export const initialCartState: CartState = cartAdapter.getInitialState({
cartStatus: 'ready',
error: null,

});

export const cartSlice = createSlice({
name: CART_FEATURE_KEY,
initialState: initialCartState,
reducers: {

add: cartAdapter.addOne,
remove: cartAdapter.removeOne,

},
extraReducers: (builder) => {

builder

Chapter 4: Bringing it all together 81

.addCase(checkoutCart.pending, (state: CartState) => {
state.cartStatus = 'pending';

})
.addCase(checkoutCart.fulfilled, (state: CartState, action) => {
state.order = action.payload.order;
state.cartStatus = 'ordered';

})
.addCase(checkoutCart.rejected, (state: CartState, action) => {
state.cartStatus = 'error';
state.error = action.error.message;

});
},

});

export const cartReducer = cartSlice.reducer;

export const cartActions = cartSlice.actions;

const { selectAll } = cartAdapter.getSelectors();

export const getCartState = (rootState: unknown): CartState =>
rootState[CART_FEATURE_KEY];

export const selectCartItems = createSelector(getCartState, selectAll);

export const selecteCartStatus = createSelector(
getCartState,
(state) => state.cartStatus

);

export const selectOrderNumber = createSelector(
getCartState,
(state) => state.order

);

export const selectTotal = createSelector(selectCartItems, (items) =>
items.reduce((total, item) => total + item.cost, 0)

);

Chapter 4: Bringing it all together 82

Cart feature library

Now that data-access has been sorted out, let’s go ahead and add our shopping
cart feature library.

nx g lib feature --directory=cart --appProject=bookstore

Recall that --appProject installs the new feature as a route to the bookstore
application. Nx guesses what the route path should be based on your library
name. Additionally, Nx will also guess where to add the new <Link> in your app
component.

The guesses made by Nx may not be correct, so let’s make sure we have the
proper setup.

apps/bookstore/src/app/app.tsx

// ...

export const App = () => {
return (

<>
<GlobalStyles />
<Header>

<h1>Bookstore</h1>
<NavigationList>

<NavigationItem>
<Link to="/books">Books</Link>

</NavigationItem>
<NavigationItem>

<Link to="/cart">Cart</Link>
</NavigationItem>

</NavigationList>
</Header>
<Main>

<Route path="/books" component={BooksFeature} />
<Route path="/cart" component={CartFeature} />

Chapter 4: Bringing it all together 83

<Route exact path="/" render={() => <Redirect to="/books" />} />
</Main>

</>
);

};

// ...

Next up, let’s implement our CartFeature component. We’ll keep the imple-
mentation simple by providing the following:

1. Display each added cart item.

2. Provide a button to remove an item.

3. Show the total cost of all items.

4. Provide a button to checkout (i.e. call the checkout API).

5. Display a success message when the API returns successfully.

Something like this should do.

libs/cart/feature/src/lib/cart-feature.tsx

import styled from 'styled-components';
import { Button } from '@acme/ui';
import { useDispatch, useSelector } from 'react-redux';
import {

cartActions,
selectCartItems,
selecteCartStatus,
selectOrderNumber,
selectTotal,
checkoutCart,

} from '@acme/cart/data-access';

const StyledCartFeature = styled.div`
.item {

Chapter 4: Bringing it all together 84

display: flex;
align-items: center;
padding-bottom: 9px;
margin-bottom: 9px;
border-bottom: 1px #ccc solid;

}
.description {

flex: 1;
}
.cost {

width: 10%;
}
.action {

width: 10%;
}

`;

export const CartFeature = () => {
const dispatch = useDispatch();
const cartItems = useSelector(selectCartItems);
const status = useSelector(selecteCartStatus);
const order = useSelector(selectOrderNumber);
const total = useSelector(selectTotal);
const cartIsEmpty = cartItems.length === 0;
return (

<StyledCartFeature>
<h1>My Cart</h1>
{order ? (

<p>
Thank you for ordering. Your order number is #{order}</stro\

ng>
.

</p>
) : (

<>
{cartIsEmpty ? <p>Your cart is empty</p> : null}
<div>

{cartItems.map((item) => (
<div className="item" key={item.id}>

Chapter 4: Bringing it all together 85

{item.description}
${item.cost.toFixed(2)}

<Button onClick={() => dispatch(cartActions.remove(item.id)\
)}>

Remove
</Button>

</div>

))}
</div>
<p>Total: ${total.toFixed(2)}</p>
<Button

disabled={cartIsEmpty || status !== 'ready'}
onClick={() => dispatch(checkoutCart(cartItems))}

>
Checkout

</Button>
</>

)}
</StyledCartFeature>

);
};

export default CartFeature;

Notice that we can dispatch the generated cartActions as well as the async
thunk checkoutCart through theRedux store. This is becauseReduxToolkit adds
thunk support by default. The rest of the code is fairly standard Redux usage
within a React component–select state via useSelector and dispatch actions
using useDispatch.

Again,we are using styled-components to style the CartFeature component. You
may choose to further extract smaller styled components out of the feature,
rather than using className to target child elements.

Chapter 4: Bringing it all together 86

Wiring up add button in books feature

Wehad previously used alertwhen users clicked on the Add button in the books
feature. Now that we have our cart feature ready, we can wire up this behavior
properly.

Let’s update the BooksFeature component as follows.

libs/cart/feature/src/lib/books-feature.tsx

import { useEffect, useState } from 'react';
import styled from 'styled-components';
import { getBooks } from '@acme/books/data-access';
import { Books } from '@acme/books/ui';
import { IBook } from '@acme/shared-models';
import { useDispatch } from 'react-redux';
import { cartActions } from '@acme/cart/data-access';

export const BooksFeature = () => {
const [books, setBooks] = useState<IBook[]>([]);
const dispatch = useDispatch();

useEffect(() => {
getBooks().then(setBooks);

}, []);

return (
<>
<h2>Books</h2>
<Books

books={books}
onAdd={(book) =>

// Using add action from cart slice
dispatch(

cartActions.add({
id: book.id,
description: book.title,
cost: book.price,

Chapter 4: Bringing it all together 87

})
)

}
/>

</>
);

};

export default BooksFeature;

Let’s look at the final result by serving up our bookstore and api apps.

Run these in different terminal windows
nx serve api
nx serve bookstore

Open up http://localhost:4200 and you should be able go through the full
workflow: Add books to cart, navigate to the Cart page, remove books from cart,
and then check out.

Chapter 4: Bringing it all together 88

Chapter 4: Bringing it all together 89

Chapter 4: Bringing it all together 90

Chapter 4: Bringing it all together 91

Looking good! However, we’re not quite yet finished. Don’t forget about our
tests!

nx affected:test

Tests are broken, so please fix themup. If youdo get stuck though, youmay refer
to the solution repository: https://github.com/nrwl/nx-react-book-example.

You’ve made it this far! Now is a good time to commit our progress before
looking at production builds: git add .; git commit -m 'add cart feature''.

Chapter 4: Bringing it all together 92

Building for production

Nowthatwehave completedour featureswe canbuild the frontendandbackend
apps for running in production.

nx build api
nx build bookstore

You can also use nx run-many --target=build --projects=api,bookstore to
build using a single command.

When both build succeed you will see the following output in the dist folder.

dist
└── apps

├── api
│ ├── assets
│ ├── main.js
│ └── main.js.map
└── bookstore

├── 3rdpartylicenses.txt
├── assets
├── favicon.ico
├── index.html
├── main.fc726d4f52fe3ea5.esm.js
├── main.fc726d4f52fe3ea5.esm.js.LICENSE.txt
├── polyfills.7e0034cfe0406d00.esm.js
└── runtime.bdc91b7b4b12a0bf.esm.js

You can run the backend application using Node, and the frontend application
using any static file server solution.

e.g.

Chapter 4: Bringing it all together 93

Run the backend
node dist/apps/main.js

Run the frontend
npx serve dist/apps/bookstore

You’ll notice issues with /api not being available from the frontend app. There
are many ways to solve this, but for the sake of simplicity we will serve the
frontend app through the API server.

Update the server code with the following.

apps/api/src/main.ts

// ...

const port = process.env.port || 3333;
const server = app.listen(port, () => {

console.log(`Listening at http://localhost:${port}/api`);
});

// Serve built frontend app
app.use(express.static(path.join(__dirname, '../bookstore')))

// Handle browser-side routes
app.get('*', function(req, res) {

res.sendFile('index.html', {root: path.join(__dirname, '../bookstore')});
});

server.on('error', console.error);

Now rebuild the API and serve.

nx build api
node dist/apps/api/main.js

Browse to http://localhost:3333, and you’ll see the application running in pro-
duction mode!

Chapter 4: Bringing it all together 94

	Table of Contents
	Introduction
	Monorepos to the rescue!
	Why Nx?
	Is this book for you?
	How this book is laid out

	Chapter 1: Getting started
	Creating a Nx workspace
	Nx workspace configuration
	Nx commands
	Preparing for development

	Chapter 2: Libraries
	Apps and Libs
	The generate command
	Feature libraries
	UI libraries
	Using the UI library
	Data-access libraries
	Enforcing module boundaries

	Chapter 3: Working effectively in a monorepo
	The dependency graph
	Only recompute affected projects
	Computation Caching
	Adding the API application
	Automatic code formatting

	Chapter 4: Bringing it all together
	Checkout API and shared models
	Cart data-access library
	Cart feature library
	Wiring up add button in books feature
	Building for production

