
Performance Optimization
| SQL Tuning

Your Guides:
Davey Zywiec & Dave Matzdorf

• Take 5 Minutes

• Turn to a Person Near You

• Introduce Yourself

• Business Cards

Let Rego be your guide.

2

Introductions

• Introduction

• IN vs EXISTS

• DISTINCT vs EXISTS

• OBS Filtering

• UNION Queries

• Inline Views

• Subquery Factoring

• Analytic Functions

Agenda

Part I:
Miscellaneous Examples

<Descriptor>

Let Rego be your guide.

4

• IN is typically better when the inner query contains a small result set

• EXISTS is typically better when the inner query contains a large result set

SELECT SRMR.FULL_NAME

FROM SRM_RESOURCES SRMR

WHERE SRMR.ID IN (SELECT TM.PRRESOURCEID FROM PRTEAM TM)

• Vs

SELECT SRMR.FULL_NAME

FROM SRM_RESOURCES SRMR

WHERE EXISTS (SELECT 1 FROM PRTEAM TM WHERE TM.PRRESOURCEID = SRMR.ID)

IN vs. EXISTS

• EXISTS is preferable to DISTINCT

• DISTINCT produces the entire result set (including duplicates), sorts, and
then filters out duplicates

SELECT DISTINCT SRMR.FULL_NAME

FROM SRM_RESOURCES SRMR

JOIN PRTEAM TM ON SRMR.ID = TM.PRRESOURCEID

• EXISTS proceeds with fetching rows immediately after the sub-query
condition has been satisfied the first time

SELECT SRMR.FULL_NAME

FROM SRM_RESOURCES SRMR

WHERE EXISTS (SELECT 1 FROM PRTEAM TM WHERE TM.PRRESOURCEID = SRMR.ID)

DISTINCT vs. EXISTS

• Seen many ways to filter based on OBS

• Many rely on complex logic, left joins to inline views, or multiple sub-queries

• Using EXISTS and the OBS_UNITS_FLAT_BY_MODE table provides an easy solution

• Filter by Unit Only, Unit and Descendants, or Units and Ancestors

SELECT SRMR.FULL_NAME

FROM SRM_RESOURCES SRMR

WHERE (:OBS_ID IS NULL OR

EXISTS (SELECT 1

FROM OBS_UNITS_FLAT_BY_MODE OBSM

JOIN PRJ_OBS_ASSOCIATIONS OBSA ON OBSM.LINKED_UNIT_ID = OBSA.UNIT_ID AND
OBSA.TABLE_NAME = 'SRM_RESOURCES'

WHERE OBSM.UNIT_ID = :OBS_ID

AND OBSM.UNIT_MODE = NVL(:OBS_MODE, 'OBS_UNIT_AND_CHILDREN')

AND OBSA.RECORD_ID = SRMR.ID))

OBS Filtering

• UNION queries perform poorly as they scan through the same data multiple times

• Require any logic changes to be made in multiple locations
SELECT CODE, NAME, SUM(FORECAST_COST) FORECAST_COST, SUM(BUDGET_COST) BUDGET_COST

FROM (SELECT INVI.CODE, INVI.NAME, FP.TOTAL_COST FORECAST_COST, 0 BUDGET_COST

FROM INV_INVESTMENTS INVI

JOIN FIN_PLANS FP ON INVI.ID = FP.OBJECT_ID AND INVI.ODF_OBJECT_CODE = FP.OBJECT_CODE

WHERE FP.IS_PLAN_OF_RECORD = 1 AND FP.PLAN_TYPE_CODE = 'FORECAST'

UNION ALL

SELECT INVI.CODE, INVI.NAME, 0 FORECAST_COST, FP.TOTAL_COST BUDGET_COST

FROM INV_INVESTMENTS INVI

JOIN FIN_PLANS FP ON INVI.ID = FP.OBJECT_ID AND INVI.ODF_OBJECT_CODE = FP.OBJECT_CODE

WHERE FP.IS_PLAN_OF_RECORD = 1 AND FP.PLAN_TYPE_CODE = 'BUDGET')

WHERE 1=1

GROUP BY CODE, NAME

• Most UNION queries can easily be replaced with logic
SELECT INVI.CODE, INVI.NAME

, SUM(CASE WHEN FP.PLAN_TYPE_CODE = 'FORECAST' THEN FP.TOTAL_COST END) FORECAST_COST

, SUM(CASE WHEN FP.PLAN_TYPE_CODE = 'BUDGET' THEN FP.TOTAL_COST END) BUDGET_COST

FROM INV_INVESTMENTS INVI

JOIN FIN_PLANS FP ON INVI.ID = FP.OBJECT_ID AND INVI.ODF_OBJECT_CODE = FP.OBJECT_CODE

WHERE 1=1

GROUP BY INVI.CODE, INVI.NAME

• Only use UNION when joining data from multiple tables

UNION Queries

• Inline views can be very beneficial but can severely affect performance

• LEFT JOINs to large inline views is typically not a good idea
SELECT SRMR.FULL_NAME, SUM(AV.SLICE) AVAIL, AL.ALLOC
FROM SRM_RESOURCES SRMR
JOIN PRJ_BLB_SLICES AV ON SRMR.ID = AV.PRJ_OBJECT_ID AND AV.SLICE_REQUEST_ID = 7
LEFT JOIN (SELECT TM.PRRESOURCEID, SUM(AL.SLICE) ALLOC

FROM PRTEAM TM
JOIN PRJ_BLB_SLICES AL ON TM.PRID = AL.PRJ_OBJECT_ID
WHERE AL.SLICE_REQUEST_ID = 6
AND AL.SLICE_DATE BETWEEN '01-JAN-14' AND '30-JUN-14'
GROUP BY TM.PRRESOURCEID) AL ON SRMR.ID = AL.PRRESOURCEID

WHERE AV.SLICE_DATE BETWEEN '01-JAN-14' AND '30-JUN-14'
GROUP BY SRMR.FULL_NAME, AL.ALLOC
ORDER BY SRMR.FULL_NAME

• Will talk through some examples to demonstrate alternatives

Inline Views

• Simplify complex queries

• Reduce repeated table access by generating temporary datasets during query execution

• Can be used as an inline view or a table

WITH ALLOCS AS (
SELECT INVI.ID, INVI.CODE, INVI.NAME, AL.SLICE_DATE, AL.SLICE
FROM SRM_RESOURCES SRMR
JOIN PRTEAM TM ON SRMR.ID = TM.PRRESOURCEID
JOIN INV_INVESTMENTS INVI ON TM.PRPROJECTID = INVI.ID
JOIN PRJ_BLB_SLICES AL ON TM.PRID = AL.PRJ_OBJECT_ID AND AL.SLICE_REQUEST_ID = 6
WHERE SRMR.UNIQUE_NAME = 'dmatzdorf' AND AL.SLICE > 0
AND AL.SLICE_DATE IN ('01-SEP-21', '01-OCT-21')

)
SELECT A.ID, A.CODE, A.NAME, A.SLICE_DATE, A.SLICE, 1 SORT_ORDER
FROM ALLOCS A
UNION ALL
SELECT NULL ID, NULL CODE, TO_CHAR(A.SLICE_DATE, 'Mon YY') || ' Total' NAME, A.SLICE_DATE, SUM(A.SLICE) SLICE, 2 SORT_ORDER
FROM ALLOCS A
GROUP BY A.SLICE_DATE
UNION ALL
SELECT NULL ID, NULL CODE, 'Total' NAME, NULL SLICE_DATE, SUM(A.SLICE) SLICE, 3 SORT_ORDER
FROM ALLOCS A
ORDER BY SLICE_DATE, SORT_ORDER, NAME

Subquery Factoring – WITH clause

Part I:
Analytic Functions

<Descriptor>

Let Rego be your guide.

11

• Used to compute aggregate values based on a group of rows

• Similar to aggregate functions but return multiple rows

• Can only appear in the SELECT or ORDER BY clause

• Used to compute cumulative, moving aggregates

What Are Analytic Functions

• Can be done with native SQL

• Odd syntax

• Analytic functions are faster and more accurate

• Get the latest status report
• Get the max updated date for each project and join to it

• Not accurate if there are multiple reports updated at the same time

• Not efficient

Why Use Analytic Functions

Available Functions

• AVG

• CORR

• COUNT

• COVAR_POP

• COVAR_SAMP

• CUME_DIST

• DENSE_RANK

• FIRST

• FIRST_VALUE

• LAG

• LAST

• LAST_VALUE

• LEAD

• LISTAGG

• MAX

• MEDIAN

• MIN

• NTH_VALUE

• NTILE

• PERCENT_RANK

• PERCENTILE_CONT

• PERCENTILE_DISC

Let Rego be your guide.

14

• RANK

• RATIO_TO_REPORT

• REGR_

• ROW_NUMBER

• STDDEV

• STDDEV_POP

• STDDEV_SAMP

• SUM

• VAR_POP

• VAR_SAMP

• VARIANCE

• ROW_NUMBER: Get the latest status report

• LEAD/LAG: Get the previous and next status report

• FIRST_VALUE/LAST_VALUE: Get the first and last status report

• NTH_VALUE: Get the nth status report

Selecting Specific Records

• SUM – Calculate total allocations

• RATIO_TO_REPORT – Calculate percentage of total allocations

• SUM – Calculate total allocation hours

• SUM ORDER BY – Running allocation hours

Summing

Let Rego be your guide.

17

Questions?

