

Agile Metrics

Your Guides: Joe Knapp and Walter Weber

Agenda

- Getting Started
 - Metrics defined
 - What should we measure?
 - What to watch for
 - Pitfalls
- Baseline Metrics
 - Value Stream & Service
 - Scrum Teams
 - Kanban Teams
- Advanced Metrics
 - Focus
 - Estimation
 - Forecasting
- Wrap Up
 - What to do next?
 - Questions

regoUniversity 2021

Getting Started

- Metrics defined
- What should we measure?
- What to watch for
- Pitfalls

Metrics Defined

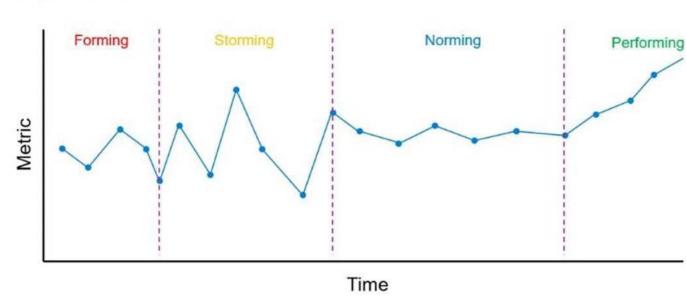
"Metrics are agreed-upon measures used to evaluate how well the organization is progressing toward the portfolio, large solution, ART, and Agile team's business and technical objectives." © Scaled Agile, Inc.

Outcomes and Key Results

- Focused on Outcomes
- Subjective
- Different by Product, Value Stream, etc.

- Focused on Output
- Data-driven analytics
- Standard

Metrics


"<u>Working software</u> is the **primary** measure of progress." - <u>The Agile Manifesto</u>

- Start with Why
- Value Streams \rightarrow Processes \rightarrow Tools \rightarrow
- Baseline Metrics
 - by Work Item Type
 - by Class of Service

Watch for Variation

- Metrics show historical output over time
- Processes have Normal and Special Cause variation
- Identify trends
- Inspect and adapt to remove Special Cause variation

Graph Trends

Pitfalls

- Continuous Improvement NOT governance
 - Use to inform Continuous Improvement efforts
 - Do NOT use to compare team
 - Do NOT use to drive performance reviews
- Garbage In Garbage Out
 - Metrics are as good as the underlying data
 - Everyone is responsible
- Fear of Failure
 - Transparency, Safety, & Trust

Baseline Metrics

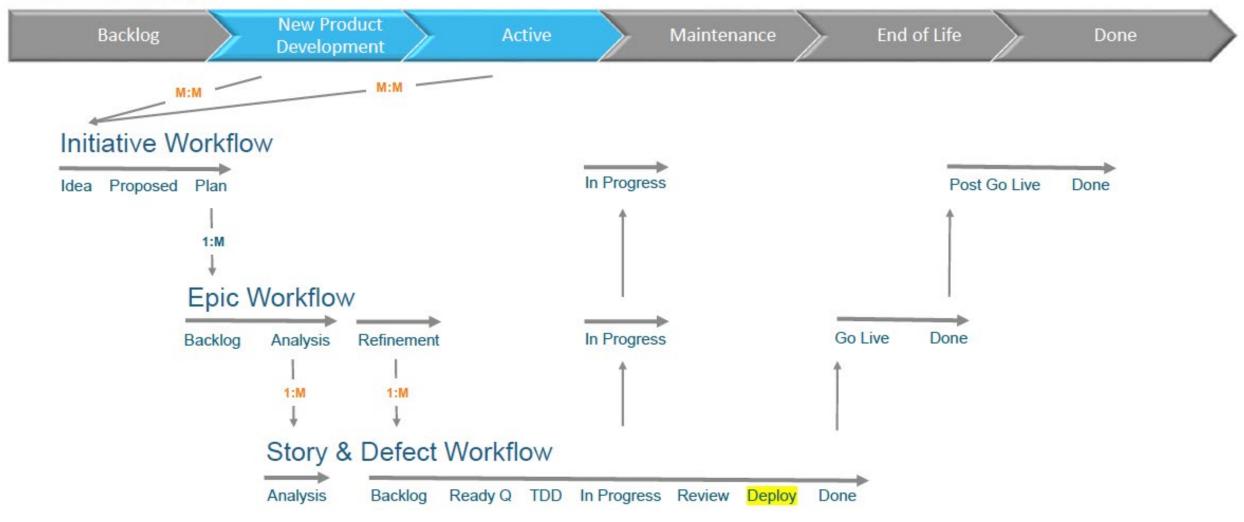
- Value Stream & Service
- Scrum Team Metrics
- Kanban Team Metrics

Throughput

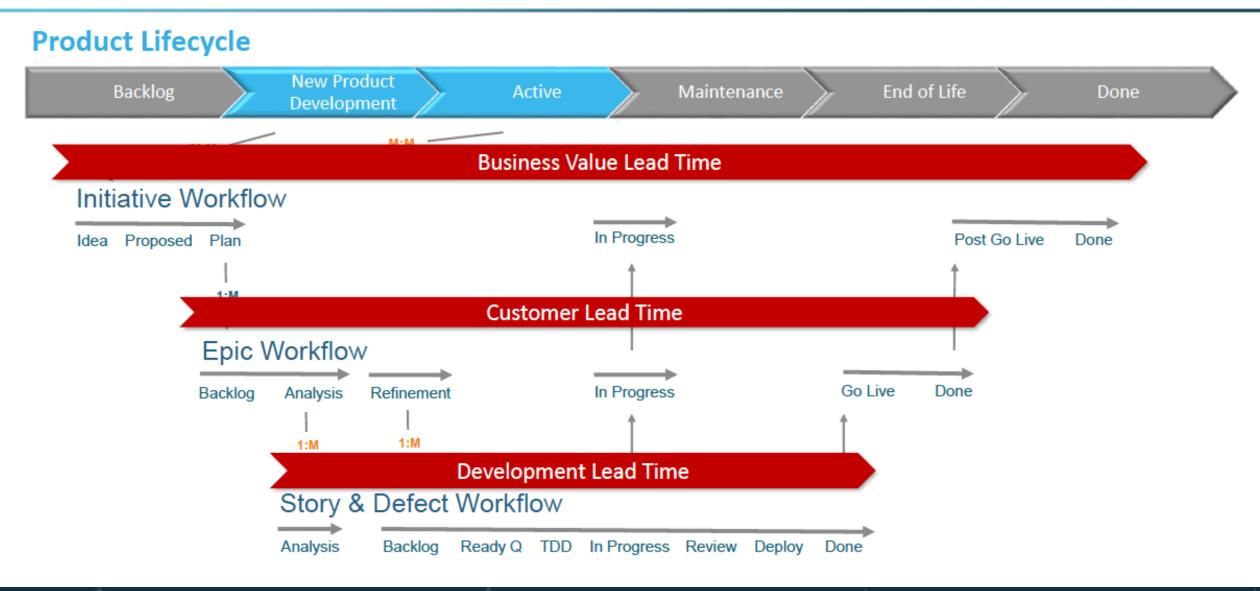
• The number of work items completed in a time period

WIP (Work in Progress)

• The number of in-progress work items



regoUniversity 2021


Caution – yes, the higher the Throughput the better, BUT it has been statistically proven that if you want to increase your Throughput, you need to put LESS work into the process

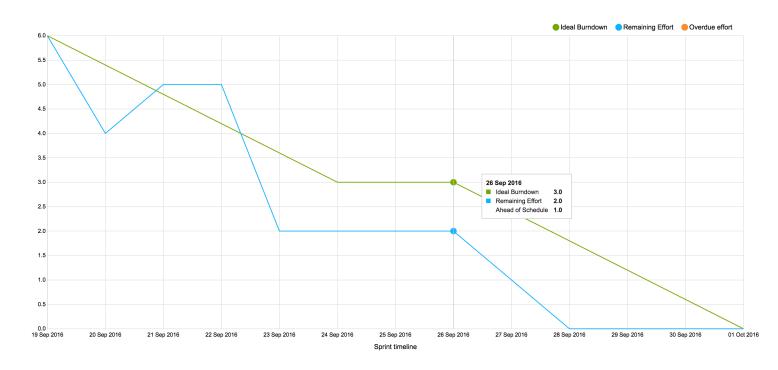
Lead Time - Value Stream

Product Lifecycle

Lead Time by Service

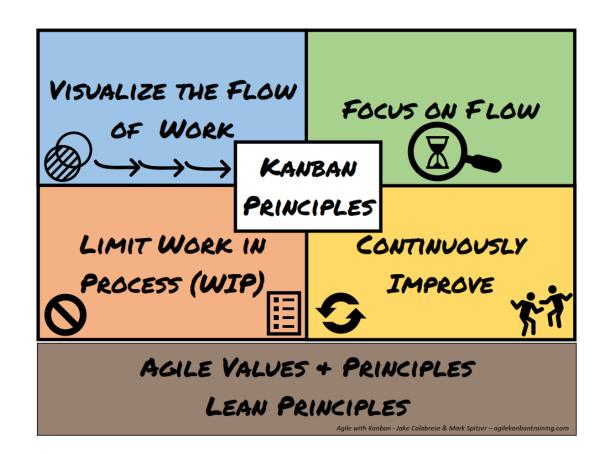
- The number of Support Issues that come in vs. go out over time
 - = (Total number of Support issues where create date >= Start Date) (Total number of Support issues where Status = Done and Done Date <= today)
 - Start Date = Jan 1, yyyy
 - Done Date = date Support issue Status = Done (can be tracked via Automation for Jira rules)
- This number should be <= 0
 - A number greater than 0 indicates a growing backlog of unfinished support issues
 - A trend over time that shows this cumulative number growing is a cause for concern
- Run this report every week

Turn Around Time


- Lead Time for Customer Support issues
- Recommend having two Defect Issue Types (Support and Bug)
 - Bugs are issues reported by the team during testing, etc.
 - Support issues come from customer support desks usually via other tools (E.g., SalesForce)
- Support handles the issue completely by themselves in their support tool
 - Turn Around Time = Time when issue was resolved Time when issue was logged in the system
- Support cannot solve the issue themselves and requires developmentto provide a solution
 - Turn Around Time = Time when issue is Done on Jira Development board Time when issues was logged
 - This requires extracting time from two different systems.

- The time an Epic takes to flow through a Service as a ratio of child stories.
- = Epic Lead Time / #User Stories under the Epic
- For example,
 - An Epic with <u>2 Stories</u> that took <u>20 days</u> to go from Backlog to Done would have an Epic Lead Time Ratio of **10 days** (20 days / 2 stories)
 - An Epic with <u>20 Stories</u> that took <u>150 days</u> to go from Backlog to Done would have an Epic Lead Time Ratio of **7.5 days** (150 days / 20 stories)

That's pretty consistent! And demonstrates that the Team's processes are scalable!


Scrum Teams

- Velocity
 - Measures how many points a team completed in a Sprint
- Planned vs Delivered
 - Measures the difference between the committed vs delivered work
- Planned vs Unplanned
 - Measures the number of work items added to a Sprint after Sprint begins

Kanban Teams

- Lead Time
 - Measures the amount of time it takes for a work item from backlog to customer
- Cycle Time
 - Measures the amount of time from start of work through done
- Throughput
 - The number of work items completed in a time period
- Cumulative Flow
 - Measures the flow of work through the system

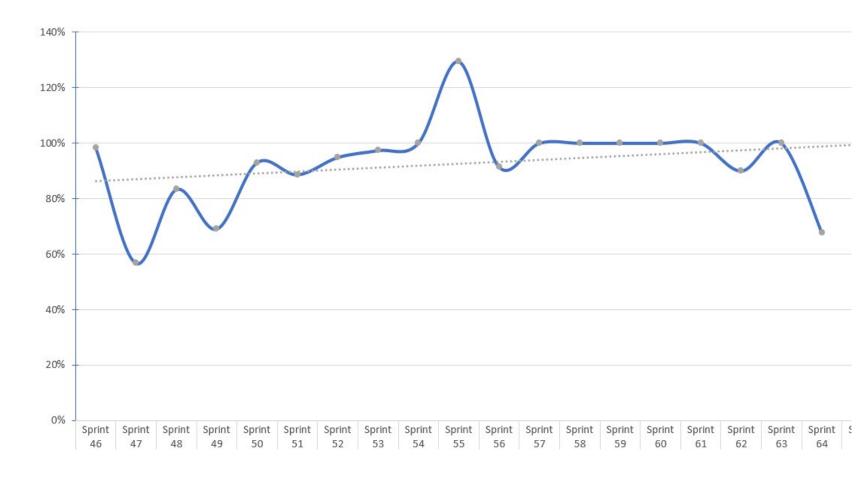
Advanced Metrics

- Focus Factor
- Accuracy of Estimation
- Accuracy of Forecast

Teams are much like modern jet fighters

A fighter aircraft is inherently unstable and must constantly make corrections.

Teams need reliable, lightweight metrics (gauges) so that performance can be easily monitored and quickly corrected.

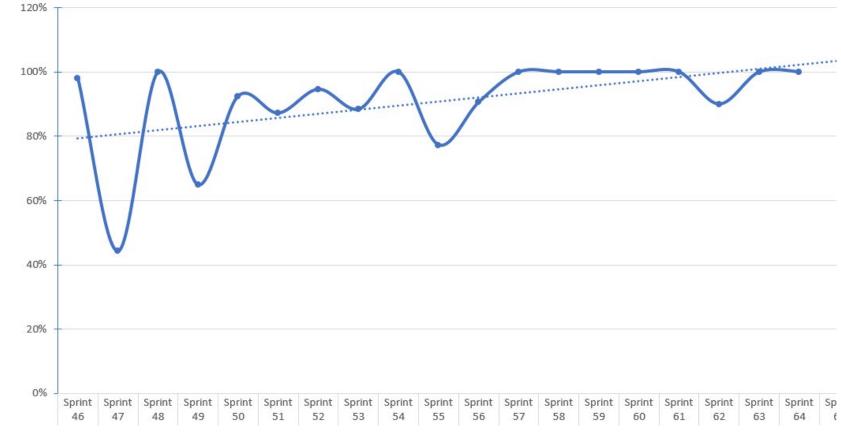

Scrum Metrics for Hyper-productive Teams by Scott Downey & Jeff Sutherland

- <u>RoboScrum Video 1</u> (Sutherland and Downey explain each metric in detail)
- <u>RoboScrum Video 2</u>
- <u>RoboScrum Video 3</u>

Scrum Metrics for Hyper-productive Teams by Scott Downey & Jeff Sutherland

Measure of the team's ability to focus on the sprint commitment.

- Benefits:
 - Focus on commitments
 - Identify and remove obstacles
- Too Low/High:
 - Disruptions (internal/external)
 - Under forecasting to appear "perfect"

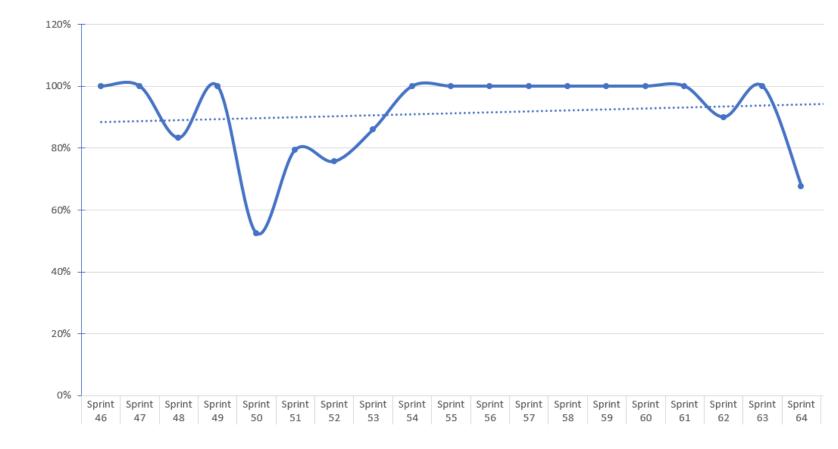


=Velocity ÷ Work Capacity

Let Rego be your guide.

Reflects the team's ability to correctly estimate work during Sprint Planning.

- Benefits
 - Helps to improve estimates on user stories
- Too Low/High
 - Overly conservative, spending too much time planning
 - User stories, technology, or products poorly understood
 - Product Owner/Manager is unavailable during the sprint
 - Requirements are changing during the sprint



=1-(∑(Estimate Deltas) ÷ Total Forecast)

Let Rego be your guide.

Ability to identify and commit to sprint deliverables.

- Benefits
 - Improve predictability
 - Identify blockers
- Too Low/High
 - Under forecasting, fear of failure
 - Sprint work not protected

= (∑Original Estimates) ÷ (∑Original Estimates + ∑Adopted Work + ∑Found Work)

Wrap Up

• What next?

What Now?

• Plan

- Decide what you want to measure and why
- Decide how metrics will be collected and shared (information radiators)
- Obtain buy-in and establish safety (avoid the pitfalls)
- Start small and grow as you learn more

• Do

- Develop metrics based on this presentation or elsewhere (there is no one-size-fits-all solution)
- Develop Automation rules to easily collect data (Excel, NimbleIQ, BI)

Check

- Verify the data
- Watch for trends
- Watch for variations
- Act (on the Data)
 - Learn through Retrospectives

Questions?

Thank You For Attending regoUniversity

Instructions for PMI credits

- Access your account at pmi.org
- Click on **Certifications**
- Click on Maintain My Certification
- Click on Visit CCR's button under the Report PDU's ٠
- Click on **Report PDU's**
- Click on **Course or Training** ٠
- Class Name = regoUniversity
- Course Number = Session Number
- Date Started = Today's Date
- Date Completed = **Today's Date** ٠
- Hours Completed = 1 PDU per hour of class time
- Training classes = **Technical**
- Click on I agree and Submit

Let us know how we can improve! Don't forget to fill out the class survey.

regoUniversity 2021

888.813.0444

Email info@regouniversity.com

Website www.regouniversity.com